Local dimensions of measures on infinitely generated self-affine sets
Rossi, E. (2014). Local dimensions of measures on infinitely generated self-affine sets. Journal of Mathematical Analysis and Applications, 413(2), 1030-1039. https://doi.org/10.1016/j.jmaa.2013.12.030
Julkaistu sarjassa
Journal of Mathematical Analysis and ApplicationsTekijät
Päivämäärä
2014Tekijänoikeudet
© Elsevier. This is a final draft version of an article whose final and definitive form has been published by Elsevier.
We show the existence of the local dimension of an invariant probability measure on an infinitely generated self-affine set, for almost all translations. This implies that an ergodic probability measure is exactly dimensional. Furthermore the local dimension equals the minimum of the local Lyapunov dimension and the dimension of the space.
Julkaisija
Academic PressISSN Hae Julkaisufoorumista
0022-247XAsiasanat
Alkuperäislähde
http://www.sciencedirect.com/science/journal/0022247X/413/2Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/23634622
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Dimension of self-affine sets for fixed translation vectors
Bárány, Balázs; Käenmäki, Antti; Koivusalo, Henna (Oxford University Press, 2018)An affine iterated function system is a finite collection of affine invertible contractions and the invariant set associated to the mappings is called self-affine. In 1988, Falconer proved that, for given matrices, the ... -
Genericity of dimension drop on self-affine sets
Käenmäki, Antti; Li, Bing (North-Holland, 2017)We prove that generically, for a self-affine set in Rd, removing one of the affine maps which defines the set results in a strict reduction of the Hausdorff dimension. This gives a partial positive answer to a folklore ... -
Structure of equilibrium states on self-affine sets and strict monotonicity of affinity dimension
Käenmäki, Antti; Morris, Ian D. (Wiley-Blackwell Publishing Ltd., 2018)A fundamental problem in the dimension theory of self‐affine sets is the construction of high‐dimensional measures which yield sharp lower bounds for the Hausdorff dimension of the set. A natural strategy for the construction ... -
Resonance between planar self-affine measures
Pyörälä, Aleksi (Elsevier, 2024)We show that if {ϕi}i∈Γ and {ψj}j∈Λ are self-affine iterated function systems on the plane that satisfy strong separation, domination and irreducibility, then for any associated self-affine measures µ and ν, the inequality ... -
Ledrappier-Young formula and exact dimensionality of self-affine measures
Bárány, Balázs; Käenmäki, Antti (Elsevier, 2017)In this paper, we solve the long standing open problem on exact dimensionality of self-affine measures on the plane. We show that every self-affine measure on the plane is exact dimensional regardless of the choice of ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.