University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

The minimal number of generators for ideals in commutative rings

Thumbnail
View/Open
500.7 Kb

Downloads:  
Show download detailsHide download details  
Authors
Pirnes, Erika
Date
2018
Discipline
MatematiikkaMathematics
Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

 
Olkoon R kommutatiivinen rengas. Tämän tutkielman tarkoituksena on etsiä ylä- ja alarajat äärellisviritteisen ideaalin I = (a1, . . . , an) ⊂ R minimaaliselle virittäjämäärälle. Tärkeänä työkaluna toimii moduliteoria; modulit yleistävät sekä ideaalit että vektoriavaruudet. Jos joukko {a1, . . . , an} on vektoriavaruuden V virittäjäjoukko, jossa mikään alkioista ai ei kuulu toisten virittäjien lineaariseen verhoon, on kyseinen joukko lineaarisesti riippumaton virittäjäjoukko eli kanta. Tällöin kaikissa vektoriavaruuden V virittäjäjoukoissa on vähintään n alkiota, ja kaikissa kannoissa niitä on tasan n kappaletta. Tarpeettomien virittäjien poistaminen ei ideaalin ollessa kyseessä kuitenkaan riitä. Vaikka mitään ideaalin virittäjistä ai ei voitaisi poistaa, pienempi virittäjäjoukko saattaa silti olla olemassa. Erityinen kokoelma renkaita, joissa ideaalin minimaalisen virittäjämäärän selvittäminen on verrattain helppoa, on lokaalit renkaat. Hieman yleisemmin: kun R on lokaali rengas, niin äärellisviritteisen R-modulin minimaalinen virittäjämäärä on sama kuin tietyn renkaaseen ja moduliin liittyvän vektoriavaruuden dimensio. Todistus pohjautuu moduliteorian tulokseen, joka tunnetaan nimellä Nakayaman lemma. Lokaalien renkaiden tapauksessa kysymys voidaan siten palauttaa vektoriavaruuden dimension selvittämiseen. Renkaan lokalisaatio syntyy samantapaisella (vaikkakin hieman yleisemmällä) konstruktiolla kuin rationaaliluvut. Sen avulla voidaan löytää alaraja ideaalin minimaaliselle virittäjämäärä alle renkaassa, joka ei ole lokaali. Jokaisella ideaalilla on lokalisaatiossa sitä vastaava ideaali, jota kutsutaan sen laajennukseksi, ja laajennuksen minimaalinen virittäjämäärä on pienempi tai yhtä suuri kuin alkuperäisen ideaalin minimaalinen virittäjämäärä. Alkuideaalin suhteen tehty lokalisaatio on lokaali rengas, joten yllä esitetty tulos antaa halutun alarajan. Jos tämän suuruinen virittäjäjoukko on löydetty, voidaan näin todistaa että se on minimaalinen siinä mielessä, että pienempiä virittäjäjoukkoja ei ole olemassa. Mikäli R on Noetherin rengas, voidaan sen ideaalien minimaaliselle virittäjämäärälle löytää myös yläraja. Tässä tekstissä esitellään Otto Forsterin tulos. Jokaiselle äärellisviritteiselle R-modulille E määritellään luku b(E) siten, että E voidaan virittää joukolla alkioita, joita on b(E) kappaletta. Myös tämä tulos hyödyntää lokalisaatiota, ja sen lisäksi Krullin dimensiokäsitettä ja Zariski-topologiaa. Käsitteiden selventämiseksi käytetyistä esimerkeistä suurin osa käsittelee polynomirenkaita. ...
Keywords
kommutatiivinen rengas ideaali lokalisaatio virittäjä moduli polynomit algebra polynomials
URI

http://urn.fi/URN:NBN:fi:jyu-201806153244

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [25559]

Related items

Showing items with similar title or keywords.

  • Extremal polynomials in stratified groups 

    Le Donne, Enrico; Leonardi, Gian Paolo; Monti, Roberto; Vittone, Davide (International Press, 2018)
    We introduce a family of extremal polynomials associated with the prolongation of a stratified nilpotent Lie algebra. These polynomials are related to a new algebraic characterization of abnormal sub-Riemannian extremals ...
  • Polynomial and horizontally polynomial functions on Lie groups 

    Antonelli, Gioacchino; Le Donne, Enrico (Springer, 2022)
    We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset S of the algebra g of left-invariant vector fields on a Lie group G and we ...
  • Non-commutative Ring Learning with Errors from Cyclic Algebras 

    Grover, Charles; Mendelsohn, Andrew; Ling, Cong; Vehkalahti, Roope (Springer Science and Business Media LLC, 2022)
    The Learning with Errors (LWE) problem is the fundamental backbone of modern lattice-based cryptography, allowing one to establish cryptography on the hardness of well-studied computational problems. However, schemes based ...
  • Matriisin Hessenbergin muoto 

    Holopainen, Niko (2013)
  • Viidennen asteen yhtälön ratkaisukaavan olemassaolon mahdottomuus Galois'n teorian pohjalta 

    Lahti, Teppo (2014)
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre