Increasing Stability of EEG Components Extraction Using Sparsity Regularized Tensor Decomposition
Wang, D., Wang, X., Zhu, Y., Toiviainen, P., Huotilainen, M., Ristaniemi, T., & Cong, F. (2018). Increasing Stability of EEG Components Extraction Using Sparsity Regularized Tensor Decomposition. In T. Huang, J. Lv, C. Sun, & A. V. Tuzikov (Eds.), ISNN 2018 : Advances in Neural Networks : 15th International Symposium on Neural Networks, Proceedings (pp. 789-799). Springer International Publishing. Lecture Notes in Computer Science, 10878. https://doi.org/10.1007/978-3-319-92537-0_89
Julkaistu sarjassa
Lecture Notes in Computer ScienceTekijät
Päivämäärä
2018Tekijänoikeudet
© Springer International Publishing AG, part of Springer Nature 2018.
Tensor decomposition has been widely employed for EEG signal
processing in recent years. Constrained and regularized tensor decomposition
often attains more meaningful and interpretable results. In this study, we applied sparse nonnegative CANDECOMP/PARAFAC tensor decomposition to
ongoing EEG data under naturalistic music stimulus. Interesting temporal, spectral and spatial components highly related with music features were extracted.
We explored the ongoing EEG decomposition results and properties in a wide
range of sparsity levels, and proposed a paradigm to select reasonable sparsity
regularization parameters. The stability of interesting components extraction
from fourteen subjects’ data was deeply analyzed. Our results demonstrate that
appropriate sparsity regularization can increase the stability of interesting components significantly and remove weak components at the same time.
Julkaisija
Springer International PublishingEmojulkaisun ISBN
978-3-319-92536-3Konferenssi
International Symposium on Neural NetworksKuuluu julkaisuun
ISNN 2018 : Advances in Neural Networks : 15th International Symposium on Neural Networks, ProceedingsISSN Hae Julkaisufoorumista
0302-9743Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28070407
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition with Spatial Sparsity Constraint
Han, Yue; Lin, Qiu-Hua; Kuang, Li-Dan; Gong, Xiao-Feng; Cong, Fengyu; Wang, Yu-Ping; Calhoun, Vince D. (Institute of Electrical and Electronics Engineers (IEEE), 2022)Tucker decomposition can provide an intuitive summary to understand brain function by decomposing multi-subject fMRI data into a core tensor and multiple factor matrices, and was mostly used to extract functional connectivity ... -
Multi-domain Features of the Non-phase-locked Component of Interest Extracted from ERP Data by Tensor Decomposition
Zhang, Guanghui; Zhang, Chi; Cao, Shuo; Xia, Xue; Tan, Xin; Si, Lichengxi; Wang, Chenxin; Wang, Xiaochun; Zhou, Chenglin; Ristaniemi, Tapani; Cong, Fengyu (Springer, 2020)The waveform in the time domain, spectrum in the frequency domain, and topography in the space domain of component(s) of interest are the fundamental indices in neuroscience research. Despite the application of time–frequency ... -
Extracting multi-mode ERP features using fifth-order nonnegative tensor decomposition
Wang, Deqing; Zhu, Yongjie; Ristaniemi, Tapani; Cong, Fengyu (Elsevier BV, 2018)Background Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden ... -
Correcting variance and polarity indeterminacies of extracted components by canonical polyadic decomposition
Hao, Yuxing; Li, Huanjie; Hu, Guoqiang; Zhao, Wei; Cong, Fengyu (Taylor & Francis, 2024)Background Back-projection has been used to correct the variance and polarity indeterminacies for the independent component analysis. The variance and polarity of the components are essential features of neuroscience ... -
Fast Implementation of Double-coupled Nonnegative Canonical Polyadic Decomposition
Wang, Xiulin; Ristaniemi, Tapani; Cong, Fengyu (IEEE, 2019)Real-world data exhibiting high order/dimensionality and various couplings are linked to each other since they share some common characteristics. Coupled tensor decomposition has become a popular technique for group ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.