dc.contributor.author | Wang, Deqing | |
dc.contributor.author | Wang, Xiaoyu | |
dc.contributor.author | Zhu, Yongjie | |
dc.contributor.author | Toiviainen, Petri | |
dc.contributor.author | Huotilainen, Minna | |
dc.contributor.author | Ristaniemi, Tapani | |
dc.contributor.author | Cong, Fengyu | |
dc.contributor.editor | Huang, Tingwen | |
dc.contributor.editor | Lv, Jiancheng | |
dc.contributor.editor | Sun, Changyin | |
dc.contributor.editor | Tuzikov, Alexander V. | |
dc.date.accessioned | 2018-12-19T11:29:27Z | |
dc.date.available | 2019-05-27T21:35:41Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Wang, D., Wang, X., Zhu, Y., Toiviainen, P., Huotilainen, M., Ristaniemi, T., & Cong, F. (2018). Increasing Stability of EEG Components Extraction Using Sparsity Regularized Tensor Decomposition. In T. Huang, J. Lv, C. Sun, & A. V. Tuzikov (Eds.), <i>ISNN 2018 : Advances in Neural Networks : 15th International Symposium on Neural Networks, Proceedings</i> (pp. 789-799). Springer International Publishing. Lecture Notes in Computer Science, 10878. <a href="https://doi.org/10.1007/978-3-319-92537-0_89" target="_blank">https://doi.org/10.1007/978-3-319-92537-0_89</a> | |
dc.identifier.other | CONVID_28070407 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/60690 | |
dc.description.abstract | Tensor decomposition has been widely employed for EEG signal
processing in recent years. Constrained and regularized tensor decomposition
often attains more meaningful and interpretable results. In this study, we applied sparse nonnegative CANDECOMP/PARAFAC tensor decomposition to
ongoing EEG data under naturalistic music stimulus. Interesting temporal, spectral and spatial components highly related with music features were extracted.
We explored the ongoing EEG decomposition results and properties in a wide
range of sparsity levels, and proposed a paradigm to select reasonable sparsity
regularization parameters. The stability of interesting components extraction
from fourteen subjects’ data was deeply analyzed. Our results demonstrate that
appropriate sparsity regularization can increase the stability of interesting components significantly and remove weak components at the same time. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer International Publishing | |
dc.relation.ispartof | ISNN 2018 : Advances in Neural Networks : 15th International Symposium on Neural Networks, Proceedings | |
dc.relation.ispartofseries | Lecture Notes in Computer Science | |
dc.rights | In Copyright | |
dc.subject.other | tensor decomposition | |
dc.subject.other | sparse regularization | |
dc.subject.other | nonnegative constraints | |
dc.subject.other | ongoing EEG | |
dc.subject.other | stability analysis | |
dc.title | Increasing Stability of EEG Components Extraction Using Sparsity Regularized Tensor Decomposition | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-201812195221 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Musiikin, taiteen ja kulttuurin tutkimuksen laitos | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.laitos | Department of Music, Art and Culture Studies | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Musiikkitiede | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.contributor.oppiaine | Musicology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2018-12-19T10:15:19Z | |
dc.relation.isbn | 978-3-319-92536-3 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 789-799 | |
dc.relation.issn | 0302-9743 | |
dc.relation.numberinseries | 10878 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Springer International Publishing AG, part of Springer Nature 2018. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | International Symposium on Neural Networks | |
dc.format.content | fulltext | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1007/978-3-319-92537-0_89 | |
dc.type.okm | A4 | |