Fast Implementation of Double-coupled Nonnegative Canonical Polyadic Decomposition
Wang, X., Ristaniemi, T., & Cong, F. (2019). Fast Implementation of Double-coupled Nonnegative Canonical Polyadic Decomposition. In ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 8588-8592). IEEE. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. https://doi.org/10.1109/ICASSP.2019.8682737
Julkaistu sarjassa
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal ProcessingPäivämäärä
2019Tekijänoikeudet
© 2019 IEEE
Real-world data exhibiting high order/dimensionality and
various couplings are linked to each other since they share
some common characteristics. Coupled tensor decomposition
has become a popular technique for group analysis in recent
years, especially for simultaneous analysis of multi-block
tensor data with common information. To address the multiblock tensor data, we propose a fast double-coupled nonnegative Canonical Polyadic Decomposition (FDC-NCPD)
algorithm in this study, based on the linked CP tensor decomposition (LCPTD) model and fast Hierarchical Alternating
Least Squares (Fast-HALS) algorithm. The proposed FDCNCPD algorithm enables simultaneous extraction of common
components, individual components and core tensors from
tensor blocks. Moreover, time consumption is greatly reduced
without compromising the decomposition quality when handling large-scale tensor blocks. Simulation experiments of
synthetic and real-world data are conducted to demonstrate
the superior performance of the proposed algorithm.
...
Julkaisija
IEEEEmojulkaisun ISBN
978-1-4799-8131-1Konferenssi
IEEE International Conference on Acoustics, Speech and Signal ProcessingKuuluu julkaisuun
ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal ProcessingISSN Hae Julkaisufoorumista
1520-6149Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/30533327
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Low-rank approximation based non-negative multi-way array decomposition on event-related potentials
Cong, Fengyu; Zhou, Guoxu; Astikainen, Piia; Zhao, Qibin; Wu, Qiang; Nandi, Asoke; Hietanen, Jari K.; Ristaniemi, Tapani; Cichocki, Andrzej (World Scientific, 2014)Non-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation ... -
Sparse nonnegative tensor decomposition using proximal algorithm and inexact block coordinate descent scheme
Wang, Deqing; Chang, Zheng; Cong, Fengyu (Springer, 2021)Nonnegative tensor decomposition is a versatile tool for multiway data analysis, by which the extracted components are nonnegative and usually sparse. Nevertheless, the sparsity is only a side effect and cannot be explicitly ... -
Tensor decomposition of EEG signals: A brief review
Cong, Fengyu; Lin, Qiu-Hua; Kuang, Li-Dan; Gong, Xiao-Feng; Astikainen, Piia; Ristaniemi, Tapani (Elsevier BV, 2015)Electroencephalography (EEG) is one fundamental tool for functional brain imaging. EEG signals tend to be represented by a vector or a matrix to facilitate data processing and analysis with generally understood methodologies ... -
Higher-order Nonnegative CANDECOMP/PARAFAC Tensor Decomposition Using Proximal Algorithm
Wang, Deqing; Cong, Fengyu; Ristaniemi, Tapani (IEEE, 2019)Tensor decomposition is a powerful tool for analyzing multiway data. Nowadays, with the fast development of multisensor technology, more and more data appear in higherorder (order > 4) and nonnegative form. However, the ... -
Discovering dynamic task-modulated functional networks with specific spectral modes using MEG
Zhu, Yongjie; Liu, Jia; Ye, Chaoxiong; Mathiak, Klaus; Astikainen, Piia; Ristaniemi, Tapani; Cong, Fengyu (Elsevier, 2020)Efficient neuronal communication between brain regions through oscillatory synchronization at certain frequencies is necessary for cognition. Such synchronized networks are transient and dynamic, established on the timescale ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.