Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition with Spatial Sparsity Constraint
Han, Y., Lin, Q.-H., Kuang, L.-D., Gong, X.-F., Cong, F., Wang, Y.-P., & Calhoun, V. D. (2022). Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition with Spatial Sparsity Constraint. IEEE Transactions on Medical Imaging, 41(3), 667-679. https://doi.org/10.1109/TMI.2021.3122226
Julkaistu sarjassa
IEEE Transactions on Medical ImagingTekijät
Han, Yue |
Päivämäärä
2022Oppiaine
TietotekniikkaTekniikkaSecure Communications Engineering and Signal ProcessingMathematical Information TechnologyEngineeringSecure Communications Engineering and Signal ProcessingTekijänoikeudet
© 2021 the Authors
Tucker decomposition can provide an intuitive summary to understand brain function by decomposing multi-subject fMRI data into a core tensor and multiple factor matrices, and was mostly used to extract functional connectivity patterns across time/subjects using orthogonality constraints. However, these algorithms are unsuitable for extracting common spatial and temporal patterns across subjects due to distinct characteristics such as high-level noise. Motivated by a successful application of Tucker decomposition to image denoising and the intrinsic sparsity of spatial activations in fMRI, we propose a low-rank Tucker-2 model with spatial sparsity constraint to analyze multi-subject fMRI data. More precisely, we propose to impose a sparsity constraint on spatial maps by using an ℓp norm (0
Julkaisija
Institute of Electrical and Electronics Engineers (IEEE)ISSN Hae Julkaisufoorumista
0278-0062Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/102952360
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work was supported in part by the National Natural Science Foundation of China under Grant 61871067, Grant 61379012, Grant 61901061, Grant 61671106, Grant 61331019, and Grant 81471742, in part by the NSF under Grant 1539067, Grant 0840895, Grant 1539067, and Grant 0715022, in part by the NIH Grant R01MH104680, Grant R01MH107354, Grant R01EB005846, and Grant 5P20GM103472, in part by the Fundamental Research Funds for the Central Universities, China, under Grant DUT20ZD220, and in part by the Supercomputing Center of Dalian University of Technology. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Shift-Invariant Canonical Polyadic Decomposition of Complex-Valued Multi-Subject fMRI Data with a Phase Sparsity Constraint
Kuang, Li-Dan; Lin, Qiu-Hua; Gong, Xiao-Feng; Cong, Fengyu; Wang, Yu-Ping; Calhoun, Vince D. (IEEE, 2020)Canonical polyadic decomposition (CPD) of multi-subject complex-valued fMRI data can be used to provide spatially and temporally shared components among groups with both magnitude and phase information. However, the CPD ... -
Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data
Hu, Guoqiang; Li, Huanjie; Zhao, Wei; Hao, Yuxing; Bai, Zonglei; Nickerson, Lisa D.; Cong, Fengyu (Elsevier, 2022)The study of brain network interactions during naturalistic stimuli facilitates a deeper understanding of human brain function. To estimate large-scale brain networks evoked with naturalistic stimuli, a tensor component ... -
Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition
Hu, Guoqiang; Zhang, Qing; Waters, Abigail B.; Li, Huanjie; Zhang, Chi; Wu, Jianlin; Cong, Fengyu; Nickerson, Lisa D. (Elsevier BV, 2019)Background. Stability of spatial components is frequently used as a post-hoc selection criteria for choosing the dimensionality of an independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) ... -
Extracting multi-mode ERP features using fifth-order nonnegative tensor decomposition
Wang, Deqing; Zhu, Yongjie; Ristaniemi, Tapani; Cong, Fengyu (Elsevier BV, 2018)Background Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden ... -
Snowball ICA : A Model Order Free Independent Component Analysis Strategy for Functional Magnetic Resonance Imaging Data
Hu, Guoqiang; Waters, Abigail B.; Aslan, Serdar; Frederick, Blaise; Cong, Fengyu; Nickerson, Lisa D. (Frontiers Media, 2020)In independent component analysis (ICA), the selection of model order (i.e., number of components to be extracted) has crucial effects on functional magnetic resonance imaging (fMRI) brain network analysis. Model order ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.