Benchmark Database for Fine-Grained Image Classification of Benthic Macroinvertebrates
Raitoharju, J., Riabchenko, E., Ahmad, I., Iosifidis, A., Gabbouj, M., Kiranyaz, S., Tirronen, V., Ärje, J., Kärkkäinen, S., & Meissner, K. (2018). Benchmark Database for Fine-Grained Image Classification of Benthic Macroinvertebrates. Image and Vision Computing, 78, 73-83. https://doi.org/10.1016/j.imavis.2018.06.005
Julkaistu sarjassa
Image and Vision ComputingTekijät
Päivämäärä
2018Tekijänoikeudet
© 2018 Elsevier B.V.
Managing the water quality of freshwaters is a crucial task worldwide. One of the most used methods to biomonitor water quality is to sample benthic macroinvertebrate communities, in particular to examine the presence and proportion of certain species. This paper presents a benchmark database for automatic visual classification methods to evaluate their ability for distinguishing visually similar categories of aquatic macroinvertebrate taxa. We make publicly available a new database, containing 64 types of freshwater macroinvertebrates, ranging in number of images per category from 7 to 577. The database is divided into three datasets, varying in number of categories (64, 29, and 9 categories). Furthermore, in order to accomplish a baseline evaluation performance, we present the classification results of Convolutional Neural Networks (CNNs) that are widely used for deep learning tasks in large databases. Besides CNNs, we experimented with several other well-known classification methods using deep features extracted from the data.
...
Julkaisija
Elsevier BVISSN Hae Julkaisufoorumista
0262-8856Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28154748
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The authors would like to thank the Academy of Finland for the grants nos. 288584, 289076, and 289104 funding the DETECT consortium's project (Advanced Computational and Statistical Techniques for Biomonitoring and Aquatic Ecosystem Service Management).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Improving statistical classification methods and ecological status assessment for river macroinvertebrates
Ärje, Johanna (University of Jyväskylä, 2016)Aquatic ecosystems are facing a growing number of human-induced stressors and the need to implement more biomonitoring to assess the ecological status of water bodies is eminent. This dissertation aims at providing tools ... -
Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2023)Smart manufacturing uses emerging deep learning models, and particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), for different industrial diagnostics tasks, e.g., classification, ... -
Domain‐specific neural networks improve automated bird sound recognition already with small amount of local data
Lauha, Patrik; Somervuo, Panu; Lehikoinen, Petteri; Geres, Lisa; Richter, Tobias; Seibold, Sebastian; Ovaskainen, Otso (Wiley-Blackwell, 2022)An automatic bird sound recognition system is a useful tool for collecting data of different bird species for ecological analysis. Together with autonomous recording units (ARUs), such a system provides a possibility to ... -
Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks
Nezami, Somayeh; Khoramshahi, Ehsan; Nevalainen, Olli; Pölönen, Ilkka; Honkavaara, Eija (MDPI AG, 2020)Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include ... -
Classification of Heart Sounds Using Convolutional Neural Network
Li, Fan; Tang, Hong; Shang, Shang; Mathiak, Klaus; Cong, Fengyu (MDPI, 2020)Heart sounds play an important role in the diagnosis of cardiac conditions. Due to the low signal-to-noise ratio (SNR), it is problematic and time-consuming for experts to discriminate different kinds of heart sounds. Thus, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.