Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation
Terziyan, V., & Vitko, O. (2023). Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation. In F. Longo, M. Affenzeller, A. Padovano, & S. Weiming (Eds.), 4th International Conference on Industry 4.0 and Smart Manufacturing (pp. 495-506). Elsevier. Procedia Computer Science, 217. https://doi.org/10.1016/j.procs.2022.12.245
Julkaistu sarjassa
Procedia Computer SciencePäivämäärä
2023Tekijänoikeudet
© 2022 The Authors. Published by Elsevier B.V.
Smart manufacturing uses emerging deep learning models, and particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), for different industrial diagnostics tasks, e.g., classification, detection, recognition, prediction, synthetic data generation, security, etc., on the basis of image data. In spite of being efficient for these objectives, the majority of current deep learning models lack interpretability and explainability. They can discover features hidden within input data together with their mutual co-occurrence. However, they are weak at discovering and making explicit hidden causalities between the features, which could be the reason behind the particular diagnoses. In this paper, we suggest Causality-Aware CNNs (CA-CNNs) and Causality-Aware GANs (CA-GANs) to address the issue of learning hidden causalities within images. The core architecture includes an additional layer of neurons (after the last convolution-pooling and just before the dense layers), which learns pairwise conditional probabilities (aka causality estimates) for the features. Computations for these neurons are driven by the adaptive Lehmer mean function. Learned causalities are merged with the features during flattening and (via fully connected layers) influence the classification outcomes. Such causality estimates can be done for the mixed inputs where images are combined with other data. We argue that CA-CNNs not only improve the classification performance of normal CNNs but also open additional opportunities for the explainability of the models’ outcomes. We consider as an additional advantage for CA-CNNs (if used as a discriminator within CA-GANs) the possibility to generate realistically looking images with respect to the causalities.
See presentation slides: https://ai.it.jyu.fi/ISM-2022-Causality.pptx
...
Julkaisija
ElsevierKonferenssi
International Conference on Industry 4.0 and Smart ManufacturingKuuluu julkaisuun
4th International Conference on Industry 4.0 and Smart ManufacturingISSN Hae Julkaisufoorumista
1877-0509Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/172578730
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Convolutional Neural Network Based Sleep Stage Classification with Class Imbalance
Xu, Qi; Zhou, Dongdong; Wang, Jian; Shen, Jiangrong; Kettunen, Lauri; Cong, Fengyu (IEEE, 2022)Accurate sleep stage classification is vital to assess sleep quality and diagnose sleep disorders. Numerous deep learning based models have been designed for accomplishing this labor automatically. However, the class ... -
Hyper-flexible Convolutional Neural Networks based on Generalized Lehmer and Power Means
Terziyan, Vagan; Malyk, Diana; Golovianko, Mariia; Branytskyi, Vladyslav (Elsevier, 2022)Convolutional Neural Network is one of the famous members of the deep learning family of neural network architectures, which is used for many purposes, including image classification. In spite of the wide adoption, such ... -
The Truth is Out There : Focusing on Smaller to Guess Bigger in Image Classification
Terziyan, Vagan; Kaikova, Olena; Malyk, Diana; Branytskyi, Vladyslav (Elsevier, 2023)In Artificial Intelligence (AI) in general and in Machine Learning (ML) in particular, which are important and integral components of modern Industry 4.0, we often deal with uncertainty, e.g., lack of complete information ... -
DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification
Prezja, Fabi; Paloneva, Juha; Pölönen, Ilkka; Niinimäki, Esko; Äyrämö, Sami (Nature Publishing Group, 2022)Recent developments in deep learning have impacted medical science. However, new privacy issues and regulatory frameworks have hindered medical data sharing and collection. Deep learning is a very data-intensive process ... -
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
DUNE Collaboration (American Physical Society, 2020)The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.