Näytä suppeat kuvailutiedot

dc.contributor.authorRaitoharju, Jenni
dc.contributor.authorRiabchenko, Ekaterina
dc.contributor.authorAhmad, Iftikhar
dc.contributor.authorIosifidis, Alexandros
dc.contributor.authorGabbouj, Moncef
dc.contributor.authorKiranyaz, Serkan
dc.contributor.authorTirronen, Ville
dc.contributor.authorÄrje, Johanna
dc.contributor.authorKärkkäinen, Salme
dc.contributor.authorMeissner, Kristian
dc.date.accessioned2018-09-19T06:16:01Z
dc.date.available2020-11-01T22:35:09Z
dc.date.issued2018
dc.identifier.citationRaitoharju, J., Riabchenko, E., Ahmad, I., Iosifidis, A., Gabbouj, M., Kiranyaz, S., Tirronen, V., Ärje, J., Kärkkäinen, S., & Meissner, K. (2018). Benchmark Database for Fine-Grained Image Classification of Benthic Macroinvertebrates. <i>Image and Vision Computing</i>, <i>78</i>, 73-83. <a href="https://doi.org/10.1016/j.imavis.2018.06.005" target="_blank">https://doi.org/10.1016/j.imavis.2018.06.005</a>
dc.identifier.otherCONVID_28154748
dc.identifier.otherTUTKAID_78210
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/59563
dc.description.abstractManaging the water quality of freshwaters is a crucial task worldwide. One of the most used methods to biomonitor water quality is to sample benthic macroinvertebrate communities, in particular to examine the presence and proportion of certain species. This paper presents a benchmark database for automatic visual classification methods to evaluate their ability for distinguishing visually similar categories of aquatic macroinvertebrate taxa. We make publicly available a new database, containing 64 types of freshwater macroinvertebrates, ranging in number of images per category from 7 to 577. The database is divided into three datasets, varying in number of categories (64, 29, and 9 categories). Furthermore, in order to accomplish a baseline evaluation performance, we present the classification results of Convolutional Neural Networks (CNNs) that are widely used for deep learning tasks in large databases. Besides CNNs, we experimented with several other well-known classification methods using deep features extracted from the data.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesImage and Vision Computing
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherbiomonitoring
dc.subject.otherfine-grained classification
dc.subject.otherbenthic macroinvertebrates
dc.subject.otherdeep learning
dc.subject.otherconvolutional neural networks
dc.titleBenchmark Database for Fine-Grained Image Classification of Benthic Macroinvertebrates
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201809064033
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-09-06T09:15:08Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange73-83
dc.relation.issn0262-8856
dc.relation.numberinseries0
dc.relation.volume78
dc.type.versionacceptedVersion
dc.rights.copyright© 2018 Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber289076
dc.subject.ysoselkärangattomat
dc.subject.ysovedenlaatu
dc.subject.ysolajinmääritys
dc.subject.ysokoneoppiminen
dc.subject.ysokonenäkö
dc.subject.ysomonitorointi
dc.subject.ysoneuroverkot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3931
jyx.subject.urihttp://www.yso.fi/onto/yso/p15738
jyx.subject.urihttp://www.yso.fi/onto/yso/p17523
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p2618
jyx.subject.urihttp://www.yso.fi/onto/yso/p3628
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.imavis.2018.06.005
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThe authors would like to thank the Academy of Finland for the grants nos. 288584, 289076, and 289104 funding the DETECT consortium's project (Advanced Computational and Statistical Techniques for Biomonitoring and Aquatic Ecosystem Service Management).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0