dc.contributor.author | Leskelä, Lasse | |
dc.contributor.author | Vihola, Matti | |
dc.date.accessioned | 2017-05-18T06:37:00Z | |
dc.date.available | 2017-05-18T06:37:00Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Leskelä, L., & Vihola, M. (2017). Conditional convex orders and measurable martingale couplings. <i>Bernoulli</i>, <i>23</i>(4A), 2784-2807. <a href="https://doi.org/10.3150/16-BEJ827" target="_blank">https://doi.org/10.3150/16-BEJ827</a> | |
dc.identifier.other | CONVID_26998490 | |
dc.identifier.other | TUTKAID_73752 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/54012 | |
dc.description.abstract | Strassen’s classical martingale coupling theorem states that two random vectors are ordered in the convex
(resp. increasing convex) stochastic order if and only if they admit a martingale (resp. submartingale) coupling.
By analysing topological properties of spaces of probability measures equipped with a Wasserstein
metric and applying a measurable selection theorem, we prove a conditional version of this result for random
vectors conditioned on a random element taking values in a general measurable space. We provide an
analogue of the conditional martingale coupling theorem in the language of probability kernels, and discuss
how it can be applied in the analysis of pseudo-marginal Markov chain Monte Carlo algorithms. We also illustrate
how our results imply the existence of a measurable minimiser in the context of martingale optimal
transport. | |
dc.language.iso | eng | |
dc.publisher | International Statistical Institute; Bernoulli Society for Mathematical Statistics and Probability | |
dc.relation.ispartofseries | Bernoulli | |
dc.subject.other | conditional coupling | |
dc.subject.other | convex stochastic order | |
dc.subject.other | increasing convex stochastic order | |
dc.subject.other | martingale coupling | |
dc.subject.other | pointwise coupling | |
dc.subject.other | probability kernel | |
dc.title | Conditional convex orders and measurable martingale couplings | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201705112285 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.contributor.oppiaine | Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2017-05-11T09:15:07Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 2784-2807 | |
dc.relation.issn | 1350-7265 | |
dc.relation.numberinseries | 4A | |
dc.relation.volume | 23 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2017 ISI/BS. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 274740 | |
dc.subject.yso | vektorit (matematiikka) | |
dc.subject.yso | matematiikka | |
dc.subject.yso | kytkentä | |
dc.subject.yso | stokastiset prosessit | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12298 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3160 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17795 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11400 | |
dc.relation.doi | 10.3150/16-BEJ827 | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Academy of Finland | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
dc.type.okm | A1 | |