Show simple item record

dc.contributor.authorJulin, Vesa
dc.date.accessioned2016-10-06T05:27:55Z
dc.date.available2018-03-24T22:45:07Z
dc.date.issued2016
dc.identifier.citationJulin, V. (2016). Generalized Harnack inequality for semilinear elliptic equations. <i>Journal de Mathématiques Pures et Appliquées</i>, <i>106</i>(5), 877-904. <a href="https://doi.org/10.1016/j.matpur.2016.03.015" target="_blank">https://doi.org/10.1016/j.matpur.2016.03.015</a>
dc.identifier.otherCONVID_25620363
dc.identifier.otherTUTKAID_69577
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/51544
dc.description.abstractThis paper is concerned with semilinear equations in divergence form div(A(x)Du) = f(u) where f : R → [0, ∞) is nondecreasing. We introduce a sharp Harnack type inequality for nonnegative solutions which is a quantified version of the condition for strong maximum principle found by Vazquez and Pucci-Serrin in [30, 24] and is closely related to the classical Keller-Osserman condition [15, 22] for the existence of entire solutions.
dc.language.isoeng
dc.publisherElsevier Masson
dc.relation.ispartofseriesJournal de Mathématiques Pures et Appliquées
dc.subject.otherHarnack inequality
dc.subject.otherelliptic equations in divergence form
dc.subject.othersemilinear equations
dc.subject.othernonhomogeneous equations
dc.titleGeneralized Harnack inequality for semilinear elliptic equations
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201610054269
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-10-05T06:15:04Z
dc.type.coarjournal article
dc.description.reviewstatuspeerReviewed
dc.format.pagerange877-904
dc.relation.issn0021-7824
dc.relation.numberinseries5
dc.relation.volume106
dc.type.versionacceptedVersion
dc.rights.copyright© 2016 Elsevier Masson SAS. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.doi10.1016/j.matpur.2016.03.015


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record