Elliptic Harnack's inequality for a singular nonlinear parabolic equation in non‐divergence form
Kurkinen, T., Parviainen, M., & Siltakoski, J. (2023). Elliptic Harnack's inequality for a singular nonlinear parabolic equation in non‐divergence form. Bulletin of the London Mathematical Society, 55(1), 470-489. https://doi.org/10.1112/blms.12739
Julkaistu sarjassa
Bulletin of the London Mathematical SocietyPäivämäärä
2023Oppiaine
Analyysin ja dynamiikan tutkimuksen huippuyksikköMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)MathematicsTekijänoikeudet
© 2022 The Authors. Bulletin of the London Mathematical Society is copyright © London Mathematical Society
We prove an elliptic Harnack's inequality for a general form of a parabolic equation that generalizes both the standard parabolic -Laplace equation and the normalized version that has been proposed in stochastic game theory. This version of the inequality does not require the intrinsic waiting time and we get the estimate with the same time level on both sides of the inequality.
Julkaisija
Wiley-BlackwellISSN Hae Julkaisufoorumista
0024-6093Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/159327239
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Hölder continuity and Harnack estimate for non-homogeneous parabolic equations
Arya, Vedansh; Julin, Vesa (Springer, 2024)In this paper we continue the study on intrinsic Harnack inequality for non-homogeneous parabolic equations in non-divergence form initiated by the first author in Arya (Calc Var Partial Differ Equ 61:30–31, 2022). We ... -
Harnack’s inequalities and boundary regularity for a general nonlinear parabolic equation in non-divergence form
Kurkinen, Tapio (Jyväskylän yliopisto, 2024)Tässä väitöskirjassa tutkitaan epälineaarista parabolista yhtälöä, jonka erikoistapauksina saadaan <i>p</i>-parabolinen yhtälö ja normalisoitu <i>p</i>-parabolinen yhtälö. Yhtälö poikkeustapauksia lukuunottamatta ei ole ... -
Generalized Harnack inequality for semilinear elliptic equations
Julin, Vesa (Elsevier Masson, 2016)This paper is concerned with semilinear equations in divergence form div(A(x)Du) = f(u) where f : R → [0, ∞) is nondecreasing. We introduce a sharp Harnack type inequality for nonnegative solutions which is a quantified ... -
On linear parabolic partial differential equations
Neijonen, Eero (2011) -
On the scientific work of Victor Isakov
Krupchyk, Katya; Salo, Mikko; Uhlmann, Gunther; Wang, Jenn-Nan (American Institute of Mathematical Sciences (AIMS), 2022)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.