Harnack’s inequalities and boundary regularity for a general nonlinear parabolic equation in non-divergence form
Tässä väitöskirjassa tutkitaan epälineaarista parabolista yhtälöä, jonka erikoistapauksina
saadaan p-parabolinen yhtälö ja normalisoitu p-parabolinen yhtälö. Yhtälö poikkeustapauksia lukuunottamatta ei ole divergenssimuotoinen ja tämän takia sopiva ratkaisun käsite saadaan viskositeettiratkaisujen teoriasta.
Artikkeleissa [A] ja [B] tutkitaan Harnackin epäyhtälöitä. Artikkelissa [A] todistetaan, että kaikki positiiviset viskositeettiratkaisut toteuttavat parabolisen Harnackin epäyhtälön, jossa epäyhtälön odotusaika riippuu ratkaisun arvosta tarkastelupisteessä. Artikkelissa [B] todistetaan, että singulaarisille eksponenteille epäyhtälö pätee myös ilman odotusaikaa ja saadaan niin sanottu elliptinen Harnackin epäyhtälö. Näytämme vastaesimerkeillä, että epäyhtälöiden eksponettiehdot ovat optimaaliset.
Artikkelissa [C] tutkitaan yhtälön reuna-arvosäännöllisyyttä. Artikkelissa todistetaan että tietynlaisen funktioperheen olemassaolo reunapisteessä on karakterisaatio pisteen säännöllisyydelle. Käyttäen tätä karakterisaatiota artikkelissa todistetaan geometrisia ehtoja,joista jokaisesta seuraa säännöllisyys. Näitä ovat muun muassa ulkopalloehto ja tulos, jonka mukaan aikasuunnassa lokaalisti ensimmäiset pisteet ovat aina säännöllisiä. This thesis studies a nonlinear parabolic equation that generalizes both the usual p-parabolic equation and the normalized p-parabolic equation arising from stochastic game theory. Apart from special cases, the equation is in non-divergence form and we use the concept of viscosity solutions.
The articles [A] and [B] focus on Harnack’s inequalities. We prove that all non-negative viscosity solutions satisfy a parabolic Harnack’s inequality with intrinsic scaling. Intrinsic scaling here means that the needed waiting time between time slices depends on the value of the solution. We also show that for a singular range, this waiting time is not needed and a so-called elliptic Harnack’s inequality, where we get the estimate on both sides without the waiting time, holds. Exponent ranges for both inequalities are optimal as shown by counterexamples. We also show that for very singular exponents, all solutions vanish in finite time.
The article [C] examines boundary regularity for this equation. We prove that there exists a barrier family at a boundary point if and only if that point is regular. We use this characterization to prove geometric conditions that also guarantee regularity. These include an exterior ball condition and a result that shows that all locally time-wise earliest points are regular.
Publisher
Jyväskylän yliopistoISBN
978-952-86-0235-4Contains publications
- Artikkeli I: Kurkinen, T., & Siltakoski, J. (2024). Intrinsic Harnack’s Inequality for a General Nonlinear Parabolic Equation in Non-divergence Form. Potential Analysis. DOI: 10.1007/s11118-024-10141-9
- Artikkeli II: Kurkinen, T., Parviainen, M., & Siltakoski, J. (2023). Elliptic Harnack's inequality for a singular nonlinear parabolic equation in non‐divergence form. Bulletin of the London Mathematical Society, 55(1), 470-489. DOI: 10.1112/blms.12739
- Artikkeli III: Kurkinen, T. Boundary regularity for a general nonlinear parabolic equation in non- divergence form. Preprint
Metadata
Show full item recordCollections
- Väitöskirjat [3524]
Related items
Showing items with similar title or keywords.
-
Elliptic Harnack's inequality for a singular nonlinear parabolic equation in non‐divergence form
Kurkinen, Tapio; Parviainen, Mikko; Siltakoski, Jarkko (Wiley-Blackwell, 2023)We prove an elliptic Harnack's inequality for a general form of a parabolic equation that generalizes both the standard parabolic -Laplace equation and the normalized version that has been proposed in stochastic game theory. ... -
A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
Feng, Yawen; Parviainen, Mikko; Sarsa, Saara (Springer, 2023)We study a general form of a degenerate or singular parabolic equation ut−|Du|γ(Δu+(p−2)ΔN∞u)=0 that generalizes both the standard parabolic p-Laplace equation and the normalized version that arises from stochastic game ... -
Hölder continuity and Harnack estimate for non-homogeneous parabolic equations
Arya, Vedansh; Julin, Vesa (Springer, 2024)In this paper we continue the study on intrinsic Harnack inequality for non-homogeneous parabolic equations in non-divergence form initiated by the first author in Arya (Calc Var Partial Differ Equ 61:30–31, 2022). We ... -
Generalized Harnack inequality for semilinear elliptic equations
Julin, Vesa (Elsevier Masson, 2016)This paper is concerned with semilinear equations in divergence form div(A(x)Du) = f(u) where f : R → [0, ∞) is nondecreasing. We introduce a sharp Harnack type inequality for nonnegative solutions which is a quantified ... -
Asymptotic mean value formulas for parabolic nonlinear equations
Blanc, Pablo; Charro, Fernando; Manfredi, Juan J.; Rossi, Julio D. (Union Matematica Argentina, 2022)In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from ...