Hölder continuity and Harnack estimate for non-homogeneous parabolic equations
Arya, V., & Julin, V. (2024). Hölder continuity and Harnack estimate for non-homogeneous parabolic equations. Mathematische Annalen, Early online. https://doi.org/10.1007/s00208-024-02979-6
Julkaistu sarjassa
Mathematische AnnalenPäivämäärä
2024Tekijänoikeudet
© The Author(s) 2024
In this paper we continue the study on intrinsic Harnack inequality for non-homogeneous parabolic equations in non-divergence form initiated by the first author in Arya (Calc Var Partial Differ Equ 61:30–31, 2022). We establish a forward-in-time intrinsic Harnack inequality, which in particular implies the Hölder continuity of the solutions. We also provide a Harnack type estimate on global scale which quantifies the strong minimum principle. In the time-independent setting, this together with Arya (2022) provides an alternative proof of the generalized Harnack inequality proven by the second author in Julin (Arch Ration Mech Anal 216:673–702, 2015).
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0025-5831Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/241742387
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SALisätietoja rahoituksesta
The authors were supported by the Academy of Finland grant 314227. Open Access funding provided by University of Jyväskylä (JYU).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Elliptic Harnack's inequality for a singular nonlinear parabolic equation in non‐divergence form
Kurkinen, Tapio; Parviainen, Mikko; Siltakoski, Jarkko (Wiley-Blackwell, 2023)We prove an elliptic Harnack's inequality for a general form of a parabolic equation that generalizes both the standard parabolic -Laplace equation and the normalized version that has been proposed in stochastic game theory. ... -
Electromagnetic wave propagation in non-homogeneous waveguides
Poretskii, Aleksandr (University of Jyväskylä, 2015)We investigate an electromagnetic waveguide, having several cylindrical ends. The waveguide is assumed to be empty and to have a perfectly conductive boundary. We study the electromagnetic field, excited in the waveguide ... -
Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse (American Institute of Mathematical Sciences (AIMS), 2021)We prove a unique continuation property for the fractional Laplacian (−Δ)s when s∈(−n/2,∞)∖Z where n≥1. In addition, we study Poincaré-type inequalities for the operator (−Δ)s when s≥0. We apply the results to show that ... -
Harnack’s inequalities and boundary regularity for a general nonlinear parabolic equation in non-divergence form
Kurkinen, Tapio (Jyväskylän yliopisto, 2024)Tässä väitöskirjassa tutkitaan epälineaarista parabolista yhtälöä, jonka erikoistapauksina saadaan <i>p</i>-parabolinen yhtälö ja normalisoitu <i>p</i>-parabolinen yhtälö. Yhtälö poikkeustapauksia lukuunottamatta ei ole ... -
Analysis of stability of axially moving orthotropic membranes and plates with a linear non-homogeneous tension profile
Tuovinen, Tero (University of Jyväskylä, 2011)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.