dc.contributor.advisor | Lehtonen, Ari | |
dc.contributor.author | Ojalehto, Jennika | |
dc.date.accessioned | 2016-05-31T16:55:24Z | |
dc.date.available | 2016-05-31T16:55:24Z | |
dc.date.issued | 2016 | |
dc.identifier.other | oai:jykdok.linneanet.fi:1542539 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/50017 | |
dc.description.abstract | Tämän tutkielman tarkoituksena on tutustua Jordanin sisältöön ja Lebesguen ulkomittaan reaaliakselin välillä ja tason joukossa, joita käytetään muun muassa tutkittaessa funktion Riemann-\hskip0pt integroituvuutta.
Tutkielmassa tutustutaan Jordanin sisä- ja ulkosisällön sekä Lebesguen ulkomitan tärkeimpiin ominaisuuksiin sekä niiden väliseen yhteyteen. Lisäksi käsitellään Jordanin ja Lebesguen ehdot funktion Riemann-integroituvuudelle.
Tutkielman aluksi kerrataan analyysin perusteista reaaliakselin välin Riemannin integraali sekä mitta- ja integraaliteorian käsite nollamittaisuus, jotka ovat tutkielman kannalta tärkeitä asioita.
Lisäksi tutustutaan funktion oskillaatioon eli funktion arvojen heilahteluun reaaliakselin välillä.
Tämä on keskeisessä asemassa tutkittaessa Riemann-integroituvuutta Jordanin ulkosisällön avulla. Jordanin kriteerissä tutkitaan joukkoa, jossa funktion oskillaatio kasvaa suuremmaksi tai on yhtä suuri kuin annettu luku $\epsilon$. Funktio on Riemann-integroituva jos ja vain jos tämä joukko on nollamittainen.
Lisäksi tutustutaan Lebesguen ulkomittaan ja sen ominaisuuksiin sekä Lebesguen ehtoon Riemann-integroituvuudelle. Lebesguen ehdon mukaan funktio on Riemann-integroituva jos ja vain jos epäjatkuvuuspisteiden joukon Lebesguen ulkomitta on nolla.
Esimerkit ja kuvat havainnollistavat mitä hyötyä Jordanin sisä- ja ulkosisällöstä sekä Lebesguen ulkomitasta on käytännössä.
Tutkielman lopuksi tutustutaan vastaaviin asioihin kuin ensimmäisessä luvussa, mutta reaaliakselin välin sijasta tutkitaan asioita tason joukossa. | fi |
dc.format.extent | 1 verkkoaineisto (45 sivua) | |
dc.format.mimetype | application/pdf | |
dc.language.iso | fin | |
dc.rights | Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. | fi |
dc.rights | This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. | en |
dc.subject.other | Riemannin integraali | |
dc.title | Jordanin sisältö ja Lebesguen ulkomitta | |
dc.identifier.urn | URN:NBN:fi:jyu-201605312792 | |
dc.type.ontasot | Pro gradu -tutkielma | fi |
dc.type.ontasot | Master’s thesis | en |
dc.contributor.tiedekunta | Matemaattis-luonnontieteellinen tiedekunta | fi |
dc.contributor.tiedekunta | Faculty of Sciences | en |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.date.updated | 2016-05-31T16:55:25Z | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | masterThesis | |
dc.contributor.oppiainekoodi | 4041 | |
dc.subject.yso | integraalilaskenta | |
dc.subject.yso | funktiot | |
dc.format.content | fulltext | |
dc.type.okm | G2 | |