Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, J., & Kykkänen, A. (2023). Pestov identities and X-ray tomography on manifolds of low regularity. Inverse Problems and Imaging, Early Access. https://doi.org/10.3934/ipi.2023017
Julkaistu sarjassa
Inverse Problems and ImagingPäivämäärä
2023Tekijänoikeudet
© 2023 American Institute of Mathematical Sciences (AIMS)
We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity that is compatible with rough geometry. This C1,1-regularity is optimal on the Hölder scale. The bulk of the article is devoted to setting up a calculus of differential and curvature operators on the unit sphere bundle atop this non-smooth structure.
Julkaisija
American Institute of Mathematical Sciences (AIMS)ISSN Hae Julkaisufoorumista
1930-8337Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/182855192
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkija, SALisätietoja rahoituksesta
Both authors were supported by the Academy of Finland (JI by grants 332890 and 351665, AK by 336254).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Tensor Tomography on Negatively Curved Manifolds of Low Regularity
Ilmavirta, Joonas; Kykkänen, Antti (Springer, 2024)We prove solenoidal injectivity for the geodesic X-ray transform of tensor fields on simple Riemannian manifolds with C1,1 metrics and non-positive sectional curvature. The proof of the result rests on Pestov energy estimates ... -
Stable reconstruction of simple Riemannian manifolds from unknown interior sources
de Hoop, Maarten V.; Ilmavirta, Joonas; Lassas, Matti; Saksala, Teemu (IOP Publishing, 2023)Consider the geometric inverse problem: there is a set of delta-sources in spacetime that emit waves travelling at unit speed. If we know all the arrival times at the boundary cylinder of the spacetime, can we reconstruct ... -
The Geodesic Ray Transform on Spherically Symmetric Reversible Finsler Manifolds
Ilmavirta, Joonas; Mönkkönen, Keijo (Springer Science and Business Media LLC, 2023)We show that the geodesic ray transform is injective on scalar functions on spherically symmetric reversible Finsler manifolds where the Finsler norm satisfies a Herglotz condition. We use angular Fourier series to reduce ... -
Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
Krupchyk, Katya; Liimatainen, Tony; Salo, Mikko (Elsevier Inc., 2022)In this article we study the linearized anisotropic Calderón problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.