Show simple item record

dc.contributor.authorPääkkönen, Salli
dc.contributor.authorPölönen, Ilkka
dc.contributor.authorCalderini, Marco
dc.contributor.authorYli-Tuomola, Aliisa
dc.contributor.authorRuokolainen, Visa
dc.contributor.authorVihinen-Ranta, Maija
dc.contributor.authorSalmi, Pauliina
dc.date.accessioned2024-12-11T10:58:43Z
dc.date.available2024-12-11T10:58:43Z
dc.date.issued2024
dc.identifier.citationPääkkönen, S., Pölönen, I., Calderini, M., Yli-Tuomola, A., Ruokolainen, V., Vihinen-Ranta, M., & Salmi, P. (2024). Lipid monitoring of Chlorella vulgaris using non-invasive near-infrared spectral imaging. <i>Journal of Applied Phycology</i>, <i>Early online</i>. <a href="https://doi.org/10.1007/s10811-024-03397-6" target="_blank">https://doi.org/10.1007/s10811-024-03397-6</a>
dc.identifier.otherCONVID_244404542
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98940
dc.description.abstractMicroalgal lipids are molecules of biotechnological interest for their application in sustainable food and energy production. However, lipid production is challenged by the time-consuming and laborious monitoring of lipid content in microalgae. This study aimed to predict the lipid content of Chlorella vulgaris cultivations based on non-invasively collected near-infrared (NIR) range hyperspectral data. A gravimetric analysis of total lipids was used as reference data (between 2 and 22% per dry weight) to compare three different models to determining the lipid content. A one-dimensional convolutional neural network and partial least squares models performed at a similar level. Both models could predict the lipid content of Chlorella dry weight with an error of 4%pt (root mean squared error). The index-based linear regression model performed the weakest of the three models, with the error of the prediction being 6%pt. Nile Red staining was used to visualise lipids on a microscope and lipid class analysis to resolve the lipid classes that explained most of the increase in lipids in Chlorella. A SHAP algorithm (SHapley Additive exPlanations) was used to analyse the wavebands of NIR spectra that were important for predicting the total lipid content. The results show that spectral data, when combined with an adequate algorithm, could be used to monitor microalgae lipids non-invasively in a closed system, in a way that has not previously been demonstrated with an imaging system.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.ispartofseriesJournal of Applied Phycology
dc.rightsCC BY 4.0
dc.subject.otherhyperspectral imaging
dc.subject.othermicroalgae
dc.subject.otherlipid content
dc.subject.othermachine learning
dc.subject.otherNile Red staining
dc.titleLipid monitoring of Chlorella vulgaris using non-invasive near-infrared spectral imaging
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202412117762
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0921-8971
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber7134/31/2021
dc.relation.grantnumber352764
dc.subject.ysokestävä energia
dc.subject.ysomikrolevät
dc.subject.ysolipidit
dc.subject.ysobiotekniikka
dc.subject.ysokoneoppiminen
dc.subject.ysohyperspektrikuvantaminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p1214
jyx.subject.urihttp://www.yso.fi/onto/yso/p26977
jyx.subject.urihttp://www.yso.fi/onto/yso/p4799
jyx.subject.urihttp://www.yso.fi/onto/yso/p2348
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p39290
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.datasethttps://doi.org/https://doi.org/10.23729/96494a42-bc7f-4e0f-9310-8ac8babae9b4
dc.relation.doi10.1007/s10811-024-03397-6
dc.relation.funderBusiness Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderBusiness Finlandfi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramPublic research networked with companies, BFen
jyx.fundingprogramOthers, AoFen
jyx.fundingprogramElinkeinoelämän kanssa verkottunut tutkimus, BFfi
jyx.fundingprogramMuut, SAfi
jyx.fundinginformationOpen Access funding provided by University of Jyväskylä (JYU). This project received funding from the European Union – NextGenerationEU instrument and is funded by the Academy of Finland under grant number 352764 and via Business Finland, funding decision number 7134/31/2021.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0