Hyperspectral Imaging for Non-invasive Diagnostics of Melanocytic Lesions
Paoli, J., Pölönen, I., Salmivuori, M., Räsänen, J., Zaar, O., Polesie, S., Koskenmies, S., Pitkänen, S., Övermark, M., Isoherranen, K., Juteau, S., Ranki, A., Grönroos, M., & Neittaanmäki, N. (2022). Hyperspectral Imaging for Non-invasive Diagnostics of Melanocytic Lesions. Acta Dermato-Venereologica, 102, Article adv00815. https://doi.org/10.2340/actadv.v102.2045
Julkaistu sarjassa
Acta Dermato-VenereologicaTekijät
Päivämäärä
2022Oppiaine
TietotekniikkaComputing, Information Technology and MathematicsLaskennallinen tiedeMathematical Information TechnologyComputing, Information Technology and MathematicsComputational ScienceTekijänoikeudet
© The Authors 2022
Malignant melanoma poses a clinical diagnostic problem, since a large number of benign lesions are excised to find a single melanoma. This study assessed the accuracy of a novel non-invasive diagnostic technology, hyperspectral imaging, for melanoma detection. Lesions were imaged prior to excision and histopathological analysis. A deep neural network algorithm was trained twice to distinguish between histopathologically verified malignant and benign melanocytic lesions and to classify the separate subgroups. Furthermore, 2 different approaches were used: a majority vote classification and a pixel-wise classification. The study included 325 lesions from 285 patients. Of these, 74 were invasive melanoma, 88 melanoma in situ, 115 dysplastic naevi, and 48 non-dysplastic naevi. The study included a training set of 358,800 pixels and a validation set of 7,313 pixels, which was then tested with a training set of 24,375 pixels. The majority vote classification achieved high overall sensitivity of 95% and a specificity of 92% (95% confidence interval (95% CI) 0.024–0.029) in differentiating malignant from benign lesions. In the pixel-wise classification, the overall sensitivity and specificity were both 82% (95% CI 0.005–0.005). When divided into 4 subgroups, the diagnostic accuracy was lower. Hyperspectral imaging provides high sensitivity and specificity in distinguishing between naevi and melanoma. This novel method still needs further validation.
...
Julkaisija
Medical Journals Sweden ABISSN Hae Julkaisufoorumista
0001-5555Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/164720096
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This study was funded by the Instrumentarium Foundation, by the Finnish Cancer foundation, by the Finnish Dermatopathology society, by the Hudfonden Foundation and by the Academy of Finland.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours : A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and Convolutional Neural Networks
Lindholm, Vivian; Raita-Hakola, Anna-Maria; Annala, Leevi; Salmivuori, Mari; Jeskanen, Leila; Saari, Heikki; Koskenmies, Sari; Pitkänen, Sari; Pölönen, Ilkka; Isoherranen, Kirsi; Ranki, Annamari (MDPI AG, 2022)Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. ... -
Differentiating Malignant from Benign for Melanocytic and Non-melanocytic Skin Tumors : A Pilot Study on Hyperspectral Imaging and Convolutional Neural Networks
Lindholm, Vivian; Raita-Hakola, Anna-Maria; Annala, Leevi; Salmivuori, Mari; Jeskanen, Leila; Koskenmies, Sari; Pitkänen, Sari; Saari, Heikki; Pölönen, Ilkka; Isoherranen, Kirsi; Ranki, Annamari (Society for Publication of Acta Dermato-Venereologica, 2022) -
Hyperspectral Imaging Reveals Spectral Differences and Can Distinguish Malignant Melanoma from Pigmented Basal Cell Carcinomas : A Pilot Study
Räsänen, Janne; Salmivuori, Mari; Pölönen, Ilkka; Grönroos, Mari; Neittaanmäki, Noora (Society for Publication of Acta Dermato-Venereologica, 2021)Pigmented basal cell carcinomas can be difficult to distinguish from melanocytic tumours. Hyperspectral imaging is a non-invasive imaging technique that measures the reflectance spectra of skin in vivo. The aim of this ... -
Discriminating basal cell carcinoma and Bowen's disease from benign skin lesions with a 3D hyperspectral imaging system and convolutional neural networks
Lindholm, Vivian; Annala, Leevi; Koskenmies, Sari; Pitkänen, Sari; Isoherranen, Kirsi; Järvinen, Anna; Jeskanen, Leila; Pölönen, Ilkka; Ranki, Annamari; Raita‐Hakola, Anna‐Maria; Salmivuori, Mari (Wiley-Blackwell, 2024) -
FPI Based Hyperspectral Imager for the Complex Surfaces : Calibration, Illumination and Applications
Raita-Hakola, Anna-Maria; Annala, Leevi; Lindholm, Vivian; Trops, Roberts; Näsilä, Antti; Saari, Heikki; Ranki, Annamari; Pölönen, Ilkka (MDPI AG, 2022)Hyperspectral imaging (HSI) applications for biomedical imaging and dermatological applications have been recently under research interest. Medical HSI applications are non-invasive methods with high spatial and spectral ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.