Lipid monitoring of Chlorella vulgaris using non-invasive near-infrared spectral imaging
Pääkkönen, S., Pölönen, I., Calderini, M., Yli-Tuomola, A., Ruokolainen, V., Vihinen-Ranta, M., & Salmi, P. (2024). Lipid monitoring of Chlorella vulgaris using non-invasive near-infrared spectral imaging. Journal of Applied Phycology, Early online. https://doi.org/10.1007/s10811-024-03397-6
Published in
Journal of Applied PhycologyAuthors
Date
2024Copyright
© 2024 the Authors
Microalgal lipids are molecules of biotechnological interest for their application in sustainable food and energy production. However, lipid production is challenged by the time-consuming and laborious monitoring of lipid content in microalgae. This study aimed to predict the lipid content of Chlorella vulgaris cultivations based on non-invasively collected near-infrared (NIR) range hyperspectral data. A gravimetric analysis of total lipids was used as reference data (between 2 and 22% per dry weight) to compare three different models to determining the lipid content. A one-dimensional convolutional neural network and partial least squares models performed at a similar level. Both models could predict the lipid content of Chlorella dry weight with an error of 4%pt (root mean squared error). The index-based linear regression model performed the weakest of the three models, with the error of the prediction being 6%pt. Nile Red staining was used to visualise lipids on a microscope and lipid class analysis to resolve the lipid classes that explained most of the increase in lipids in Chlorella. A SHAP algorithm (SHapley Additive exPlanations) was used to analyse the wavebands of NIR spectra that were important for predicting the total lipid content. The results show that spectral data, when combined with an adequate algorithm, could be used to monitor microalgae lipids non-invasively in a closed system, in a way that has not previously been demonstrated with an imaging system.
...
Publisher
Springer NatureISSN Search the Publication Forum
0921-8971Keywords
Dataset(s) related to the publication
https://doi.org/https://doi.org/10.23729/96494a42-bc7f-4e0f-9310-8ac8babae9b4Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/244404542
Metadata
Show full item recordCollections
Related funder(s)
Business Finland; Research Council of FinlandFunding program(s)
Public research networked with companies, BF; Others, AoFAdditional information about funding
Open Access funding provided by University of Jyväskylä (JYU). This project received funding from the European Union – NextGenerationEU instrument and is funded by the Academy of Finland under grant number 352764 and via Business Finland, funding decision number 7134/31/2021.License
Related items
Showing items with similar title or keywords.
-
Non-invasive monitoring of microalgae cultivations using hyperspectral imager
Pääkkönen, Salli; Pölönen, Ilkka; Raita-Hakola, Anna-Maria; Carneiro, Mariana; Cardoso, Helena; Mauricio, Dinis; Rodrigues, Alexandre Miguel Cavaco; Salmi, Pauliina (Springer Nature, 2024)High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the ... -
Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network
Salmi, Pauliina; Calderini, Marco; Pääkkönen, Salli; Taipale, Sami; Pölönen, Ilkka (Springer Science and Business Media LLC, 2022)Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the ... -
Hyperspectral Imaging for Non-invasive Diagnostics of Melanocytic Lesions
Paoli, John; Pölönen, Ilkka; Salmivuori, Mari; Räsänen, Janne; Zaar, Oscar; Polesie, Sam; Koskenmies, Sari; Pitkänen, Sari; Övermark, Meri; Isoherranen, Kirsi; Juteau, Susanna; Ranki, Annamari; Grönroos, Mari; Neittaanmäki, Noora (Medical Journals Sweden AB, 2022)Malignant melanoma poses a clinical diagnostic problem, since a large number of benign lesions are excised to find a single melanoma. This study assessed the accuracy of a novel non-invasive diagnostic technology, hyperspectral ... -
Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network
Salmi, Pauliina; Pölönen, Ilkka; Pääkkönen, Salli; Taipale, Sami; Calderini, Marco (University of Jyväskylä, 2021-11-08)Artikkeliin "Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network" liittyvä aineisto koostuu seuraavista osista: 1.Transmittanssi-hyperspektrikuvat levänäytteistä ... -
Piecewise anomaly detection using minimal learning machine for hyperspectral images
Raita-Hakola, A.-M.; Pölönen, I. (Copernicus Publications, 2021)Hyperspectral imaging, with its applications, offers promising tools for remote sensing and Earth observation. Recent development has increased the quality of the sensors. At the same time, the prices of the sensors are ...