Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network
Salmi, P., Calderini, M., Pääkkönen, S., Taipale, S., & Pölönen, I. (2022). Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network. Journal of Applied Phycology, 34(3), 1565-1575. https://doi.org/10.1007/s10811-022-02735-w
Julkaistu sarjassa
Journal of Applied PhycologyPäivämäärä
2022Oppiaine
Laskennallinen tiedeComputing, Information Technology and MathematicsResurssiviisausyhteisöAkvaattiset tieteetComputational ScienceComputing, Information Technology and MathematicsSchool of Resource WisdomAquatic SciencesTekijänoikeudet
© The Author(s) 2022
Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the distinctive optical properties of different microalgae groups are targeted for monitoring. Since different microalgae can grow together, their spectral signals are mixed with ambient properties, making estimations of species biomasses a challenging task. In this study, we cultured five different microalgae and monitored their growth with a mobile spectral imager in three separate experiments. We trained and validated a one-dimensional convolution neural network by introducing absorbance spectra of the cultured microalgae and simulated pairwise mixtures of them. We then tested the model with samples of microalgae (monocultures and their pairwise mixtures) that were not part of the training or validation data. The convolution neural network classified microalgae accurately in the monocultures (test accuracy = 95%, SD = 4) and in the pairwise mixtures (test accuracy = 100%, SD = 0). Median prediction errors for biomasses were 17% (mean = 22%, SD = 18) for the monocultures and 17% (mean 24%, SD = 28) for the pairwise mixtures. As the spectral camera produced spatial information of the imaged target, we also demonstrated here the spatial distribution of microalgae biomass by applying the model across 5 × 5 pixel areas of the spectral images. The results of this study encourage the application of a one-dimensional convolution neural network to solve classification, regression, and distribution problems related to microalgae observation, simultaneously.
...
Julkaisija
Springer Science and Business Media LLCISSN Hae Julkaisufoorumista
0921-8971Asiasanat
Julkaisuun liittyvä(t) tutkimusaineisto(t)
https://doi.org/10.5281/zenodo.5061719Salmi, Pauliina; Calderini, Marco; Taipale, Sami; Pölönen, Ilkka; Pääkkönen, Salli. (2021). Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network. V. 2.9.2021. University of Jyväskylä. https://doi.org/10.17011/jyx/dataset/78519. https://urn.fi/URN:NBN:fi:jyu-202111085543
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/117816621
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Tutkijatohtori, SALisätietoja rahoituksesta
Open Access funding provided by University of Jyväskylä (JYU). This research was funded by the Academy of Finland, grant number 321780 for Pauliina Salmi.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network
Salmi, Pauliina; Pölönen, Ilkka; Pääkkönen, Salli; Taipale, Sami; Calderini, Marco (University of Jyväskylä, 2021-11-08)Artikkeliin "Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network" liittyvä aineisto koostuu seuraavista osista: 1.Transmittanssi-hyperspektrikuvat levänäytteistä ... -
Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours : A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and Convolutional Neural Networks
Lindholm, Vivian; Raita-Hakola, Anna-Maria; Annala, Leevi; Salmivuori, Mari; Jeskanen, Leila; Saari, Heikki; Koskenmies, Sari; Pitkänen, Sari; Pölönen, Ilkka; Isoherranen, Kirsi; Ranki, Annamari (MDPI AG, 2022)Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. ... -
Non-invasive monitoring of microalgae cultivations using hyperspectral imager
Pääkkönen, Salli; Pölönen, Ilkka; Raita-Hakola, Anna-Maria; Carneiro, Mariana; Cardoso, Helena; Mauricio, Dinis; Rodrigues, Alexandre Miguel Cavaco; Salmi, Pauliina (Springer Nature, 2024)High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the ... -
Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion
Annala, Leevi; Honkavaara, Eija; Tuominen, Sakari; Pölönen, Ilkka (MDPI AG, 2020)Miniaturized hyperspectral imaging techniques have developed rapidly in recent years and have become widely available for different applications. Combining calibrated hyperspectral imagery with inverse physically based ... -
Discriminating basal cell carcinoma and Bowen's disease from benign skin lesions with a 3D hyperspectral imaging system and convolutional neural networks
Lindholm, Vivian; Annala, Leevi; Koskenmies, Sari; Pitkänen, Sari; Isoherranen, Kirsi; Järvinen, Anna; Jeskanen, Leila; Pölönen, Ilkka; Ranki, Annamari; Raita‐Hakola, Anna‐Maria; Salmivuori, Mari (Wiley-Blackwell, 2024)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.