Show simple item record

dc.contributor.authorGoldstein, Paweł
dc.contributor.authorGrochulska, Zofia
dc.contributor.authorGuo, Chang-Yu
dc.contributor.authorKoskela, Pekka
dc.contributor.authorNandi, Debanjan
dc.date.accessioned2024-10-24T06:54:52Z
dc.date.available2024-10-24T06:54:52Z
dc.date.issued2024
dc.identifier.citationGoldstein, P., Grochulska, Z., Guo, C.-Y., Koskela, P., & Nandi, D. (2024). Characterizations of generalized John domains via homological bounded turning. <i>Colloquium Mathematicum</i>, <i>Early online</i>. <a href="https://doi.org/10.4064/cm9084-7-2024" target="_blank">https://doi.org/10.4064/cm9084-7-2024</a>
dc.identifier.otherCONVID_243320140
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/97661
dc.description.abstractWe extend the characterization of John disks obtained by Näkki and Väisälä (1991) to generalized John domains in higher dimensions under mild assumptions. The main ingredient in this characterization is to use the higher-dimensional analogues of local linear connectivity (LLC) and homological bounded turning properties introduced by Väisälä in his 1997 study of metric duality theory. Somewhat surprisingly, we construct a uniform domain in R3, which is topologically simple, such that the complementary domain fails to be homotopically 1-bounded turning. In particular, this shows that a similar characterization of generalized John domains in terms of higher-dimensional homotopic bounded turning does not hold in dimension 3.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Mathematics, Polish Academy of Sciences
dc.relation.ispartofseriesColloquium Mathematicum
dc.rightsIn Copyright
dc.subject.otherJohn domain
dc.subject.otheruniform domain
dc.subject.otherball separation property
dc.subject.otherhomological bounded turning
dc.subject.otherhomotopical bounded turning
dc.subject.other57N65
dc.subject.other55M05
dc.titleCharacterizations of generalized John domains via homological bounded turning
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202410246518
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0010-1354
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© Instytut Matematyczny PAN, 2024
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber323960
dc.subject.ysotopologiset avaruudet
dc.subject.ysoalgebrallinen topologia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27852
jyx.subject.urihttp://www.yso.fi/onto/yso/p27954
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.4064/cm9084-7-2024
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationP. Goldstein was partially supported by FNP grant POMOST BIS/2012-6/3 and by NCN grant no. 2012/05/E/ST1/03232. C.-Y. Guo is supported by the Young Scientist Program of the Ministry of Science and Technology of China (No. 2021YFA1002200), the National Natural Science Foundation of China (No. 12101362), the Natural Science Foundation of Shandong Province (No. ZR2021QA003) and the Taishan Scholar project. P. Koskela was partially supported by the Academy of Finland grant 323960.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright