Characterizations of generalized John domains via homological bounded turning
Goldstein, P., Grochulska, Z., Guo, C.-Y., Koskela, P., & Nandi, D. (2024). Characterizations of generalized John domains via homological bounded turning. Colloquium Mathematicum, Early online. https://doi.org/10.4064/cm9084-7-2024
Published in
Colloquium MathematicumDate
2024Copyright
© Instytut Matematyczny PAN, 2024
We extend the characterization of John disks obtained by Näkki and Väisälä (1991) to generalized John domains in higher dimensions under mild assumptions. The main ingredient in this characterization is to use the higher-dimensional analogues of local linear connectivity (LLC) and homological bounded turning properties introduced by Väisälä in his 1997 study of metric duality theory.
Somewhat surprisingly, we construct a uniform domain in R3, which is topologically simple, such that the complementary domain fails to be homotopically 1-bounded turning. In particular, this shows that a similar characterization of generalized John domains in terms of higher-dimensional homotopic bounded turning does not hold in dimension 3.
Publisher
Institute of Mathematics, Polish Academy of SciencesISSN Search the Publication Forum
0010-1354Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/243320140
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
P. Goldstein was partially supported by FNP grant POMOST BIS/2012-6/3 and by NCN grant no. 2012/05/E/ST1/03232. C.-Y. Guo is supported by the Young Scientist Program of the Ministry of Science and Technology of China (No. 2021YFA1002200), the National Natural Science Foundation of China (No. 12101362), the Natural Science Foundation of Shandong Province (No. ZR2021QA003) and the Taishan Scholar project. P. Koskela was partially supported by the Academy of Finland grant 323960. ...License
Related items
Showing items with similar title or keywords.
-
Separaatioaksioomat ja jatkuvien kuvausten laajentaminen
Timonen, Joel (2023)Tässä matematiikan Pro Gradu -tutkielmassa todistetaan McShanen ja Tietzen jatkolauseet sekä Urysonin lemma. Ensimmäinen tulos liittyy metrisiin avaruuksiin ja kaksi jälkimmäistä topologiaan. McShanen jatkolause kertoo, ... -
Kompaktisuus ja kompaktisointi
Salo, Mikko (2017)Tässä tutkielmassa käsitellään topologisia avaruuksia ja erityisesti niiden kompaktisuutta. Topologiset avaruudet ovat yleistys normiavaruuksista, mutta niissä ei tunneta etäisyyden käsitettä. Topologisia käsitteitä ovatkin ... -
Yleistettyjen jonojen käyttö topologiassa
Karvinen, Antti (2016) -
Parakompaktius
Varis, Valtteri (2023)Tämä tutkielma on katsaus topologiaan keskittyen etenkin parakompaktiuteen ja avaruuksien metristyvyyteen. Tutkielmassa esitellään topologian perusteet avoimista joukoista alkaen ja tämän jälkeen käydään läpi tarvittavia ... -
Approximation by uniform domains in doubling quasiconvex metric spaces
Rajala, Tapio (Springer, 2021)We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.