Approximation by BV-extension Sets via Perimeter Minimization in Metric Spaces
Koivu, J., Lučić, D., & Rajala, T. (2024). Approximation by BV-extension Sets via Perimeter Minimization in Metric Spaces. International Mathematics Research Notices, Early online. https://doi.org/10.1093/imrn/rnae048
Published in
International Mathematics Research NoticesDate
2024Copyright
© 2024 the Authors
We show that every bounded domain in a metric measure space can be approximated in measure from inside by closed BV-extension sets. The extension sets are obtained by minimizing the sum of the perimeter and the measure of the difference between the domain and the set. By earlier results, in PI spaces the minimizers have open representatives with locally quasiminimal surface. We give an example in a PI space showing that the open representative of the minimizer need not be a BVextension domain nor locally John.
Publisher
Oxford University Press (OUP)ISSN Search the Publication Forum
1073-7928Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/207749898
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Sobolev, BV and perimeter extensions in metric measure spaces
Caputo, Emanuele; Koivu, Jesse; Rajala, Tapio (Suomen matemaattinen yhdistys, 2024)We study extensions of sets and functions in general metric measure spaces. We show that an open set has the strong BV-extension property if and only if it has the strong extension property for sets of finite perimeter. ... -
Differential of metric valued Sobolev maps
Gigli, Nicola; Pasqualetto, Enrico; Soultanis, Elefterios (Elsevier, 2020)We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove ... -
Isometric embeddings of snowflakes into finite-dimensional Banach spaces
Le Donne, Enrico; Rajala, Tapio; Walsberg, Erik (American Mathematical Society, 2018)We consider a general notion of snowflake of a metric space by composing the distance with a nontrivial concave function. We prove that a snowflake of a metric space X isometrically embeds into some finite-dimensional ... -
Tensorization of p-weak differentiable structures
Eriksson-Bique, Sylvester; Rajala, Tapio; Soultanis, Elefterios (Elsevier, 2024)We consider p-weak differentiable structures that were recently introduced in [9], and prove that the product of p-weak charts is a p-weak chart. This implies that the product of two spaces with a p-weak differentiable ... -
Approximation by uniform domains in doubling quasiconvex metric spaces
Rajala, Tapio (Springer, 2021)We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.