Differential of metric valued Sobolev maps
Gigli, N., Pasqualetto, E., & Soultanis, E. (2020). Differential of metric valued Sobolev maps. Journal of Functional Analysis, 278(6), Article 108403. https://doi.org/10.1016/j.jfa.2019.108403
Julkaistu sarjassa
Journal of Functional AnalysisPäivämäärä
2020Tekijänoikeudet
© 2019 Published by Elsevier Inc
We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove that our notion is consistent with Kirchheim's metric differential when the source is a Euclidean space, and with the abstract differential provided by the first author when the target is R. We also show compatibility with the concept of co-local weak differential introduced by Convent and Van Schaftingen.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0022-1236Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/33943877
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Tensorization of p-weak differentiable structures
Eriksson-Bique, Sylvester; Rajala, Tapio; Soultanis, Elefterios (Elsevier, 2024)We consider p-weak differentiable structures that were recently introduced in [9], and prove that the product of p-weak charts is a p-weak chart. This implies that the product of two spaces with a p-weak differentiable ... -
Sobolev, BV and perimeter extensions in metric measure spaces
Caputo, Emanuele; Koivu, Jesse; Rajala, Tapio (Suomen matemaattinen yhdistys, 2024)We study extensions of sets and functions in general metric measure spaces. We show that an open set has the strong BV-extension property if and only if it has the strong extension property for sets of finite perimeter. ... -
Approximation by uniform domains in doubling quasiconvex metric spaces
Rajala, Tapio (Springer, 2021)We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains. -
A new Cartan-type property and strict quasicoverings when P = 1 in metric spaces
Lahti, Panu (Suomalainen tiedeakatemia, 2018)In a complete metric space that is equipped with a doubling measure and supports a Poincaré inequality, we prove a new Cartan-type property for the fine topology in the case p = 1. Then we use this property to prove the ... -
Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces
Di Marino, Simone; Gigli, Nicola; Pasqualetto, Enrico; Soultanis, Elefterios (Springer, 2021)We show that, given a metric space (Y,d)(Y,d) of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure μμ on YY giving finite mass to bounded sets, the resulting metric measure space ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.