Tensorization of p-weak differentiable structures
Eriksson-Bique, S., Rajala, T., & Soultanis, E. (2024). Tensorization of p-weak differentiable structures. Journal of Functional Analysis, 287, Article 110497. https://doi.org/10.1016/j.jfa.2024.110497
Julkaistu sarjassa
Journal of Functional AnalysisPäivämäärä
2024Tekijänoikeudet
© 2024 The Author(s). Published by Elsevier Inc.
We consider p-weak differentiable structures that were recently introduced in [9], and prove that the product of p-weak charts is a p-weak chart. This implies that the product of two spaces with a p-weak differentiable structure also admits a p-weak differentiable structure. We make partial progress on the tensorization problem of Sobolev spaces by showing an isometric embedding result. Further, we establish tensorization when one of the factors is PI.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0022-1236Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/213685906
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Tutkijatohtori, SA; Akatemiahanke, SALisätietoja rahoituksesta
The first author was partially supported by the Finnish Academy under Research postdoctoral Grant No. 330048. The second author was partially supported by the Finnish Academy, Grant No. 314789. The third author was supported by the Swiss National Science Foundation Grant 182423.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Differential of metric valued Sobolev maps
Gigli, Nicola; Pasqualetto, Enrico; Soultanis, Elefterios (Elsevier, 2020)We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove ... -
Sobolev, BV and perimeter extensions in metric measure spaces
Caputo, Emanuele; Koivu, Jesse; Rajala, Tapio (Suomen matemaattinen yhdistys, 2024)We study extensions of sets and functions in general metric measure spaces. We show that an open set has the strong BV-extension property if and only if it has the strong extension property for sets of finite perimeter. ... -
Differential structure associated to axiomatic Sobolev spaces
Giglia, Nicola; Pasqualetto, Enrico (Elsevier GmbH, Urban und Fischer, 2020)The aim of this note is to explain in which sense an axiomatic Sobolev space over a general metric measure space (à la Gol’dshtein–Troyanov) induces – under suitable locality assumptions – a first-order differential structure. -
Tensorization of quasi-Hilbertian Sobolev spaces
Eriksson-Bique, Sylvester; Rajala, Tapio; Soultanis, Elefterios (EMS Press, 2024)The tensorization problem for Sobolev spaces asks for a characterization of how the Sobolev space on a product metric measure space X Y can be determined from its factors. We show that two natural descriptions of the Sobolev ... -
Approximation by uniform domains in doubling quasiconvex metric spaces
Rajala, Tapio (Springer, 2021)We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.