A quantitative second order estimate for (weighted) p-harmonic functions in manifolds under curvature-dimension condition
Liu, J., Zhang, S., & Zhou, Y. (2024). A quantitative second order estimate for (weighted) p-harmonic functions in manifolds under curvature-dimension condition. Journal of Functional Analysis, 286(10), Article 110394. https://doi.org/10.1016/j.jfa.2024.110394
Published in
Journal of Functional AnalysisDate
2024Copyright
© 2024 the Authors
We build up a quantitative second-order Sobolev estimate of lnw for positive p-harmonic functions w in Riemannian manifolds under Ricci curvature bounded from below and also for positive weighted p-harmonic functions w in weighted manifolds under the Bakry-Émery curvature-dimension condition.
Publisher
ElsevierISSN Search the Publication Forum
0022-1236Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/207628560
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ... -
Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
Krupchyk, Katya; Liimatainen, Tony; Salo, Mikko (Elsevier Inc., 2022)In this article we study the linearized anisotropic Calderón problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a ... -
Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions
Björn, Anders; Björn, Jana; Lehrbäck, Juha (Hebrew University Magnes Press; Springer, 2023)In a complete metric space equipped with a doubling measure supporting a p-Poincaré inequality, we prove sharp growth and integrability results for p-harmonic Green functions and their minimal p-weak upper gradients. We ... -
Limiting Carleman weights and conformally transversally anisotropic manifolds
Angulo, Pablo; Faraco, Daniel; Guijarro, Luis; Salo, Mikko (American Mathematical Society, 2020)We analyze the structure of the set of limiting Carleman weights in all conformally flat manifolds, $ 3$-manifolds, and $ 4$-manifolds. In particular we give a new proof of the classification of Euclidean limiting Carleman ... -
Improved hardy inequalities on Riemannian manifolds
Mohanta, Kaushik; Tyagi, Jagmohan (Taylor & Francis, 2023)We study the following version of Hardy-type inequality on a domain Ω in a Riemannian manifold (M,g): ∫Ω|∇u|pgραdVg≥(|p−1+β|p)p∫Ω|u|p|∇ρ|pg|ρ|pραdVg+∫ΩV|u|pραdVg,∀u∈C∞c(Ω). We provide sufficient conditions on p,α,β,ρ ...