Limiting Carleman weights and conformally transversally anisotropic manifolds
Angulo, P., Faraco, D., Guijarro, L., & Salo, M. (2020). Limiting Carleman weights and conformally transversally anisotropic manifolds. Transactions of the American Mathematical Society, 373(7), 5171-5197. https://doi.org/10.1090/tran/8072
Julkaistu sarjassa
Transactions of the American Mathematical SocietyPäivämäärä
2020Oppiaine
MatematiikkaInversio-ongelmien huippuyksikköMathematicsCentre of Excellence in Inverse ProblemsTekijänoikeudet
© 2020 American Mathematical Society
We analyze the structure of the set of limiting Carleman weights in all conformally flat manifolds, $ 3$-manifolds, and $ 4$-manifolds. In particular we give a new proof of the classification of Euclidean limiting Carleman weights, and show that there are only three basic such weights up to the action of the conformal group. In dimension three we show that if the manifold is not conformally flat, there could be one or two limiting Carleman weights. We also characterize the metrics that have more than one limiting Carleman weight. In dimension four we obtain a complete spectrum of examples according to the structure of the Weyl tensor. In particular, we construct unimodular Lie groups whose Weyl or Cotton-York tensors have the symmetries of conformally transversally anisotropic manifolds, but which do not admit limiting Carleman weights.
Julkaisija
American Mathematical SocietyISSN Hae Julkaisufoorumista
0002-9947Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/41602117
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen Akatemia; Euroopan komissioRahoitusohjelmat(t)
Huippuyksikkörahoitus, SA; Akatemiahanke, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
The first author was supported by research grant MTM2017-85934-C3-3-P from the Ministerio de Ciencia e Innovación (MCINN) and ERC 301179. The second and third authors were supported by research grants MTM2014-57769-1-P, MTM2014- 57769-3-P, MTM2017-85934-C3-2-P from MCINN, by ICMAT Severo Ochoa projects SEV-2011-0087 and SEV-2015-0554 (MINECO), by ERC 301179 and by ERC 34728. The fourth author was supported by the Academy of Finland (grants 284715 and 309963) and by ERC under Horizon 2020 (ERC CoG 770924). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The anisotropic Calderón problem at large fixed frequency on manifolds with invertible ray transform
Ma, Shiqi; Sahoo, Suman Kumar; Salo, Mikko (Wiley, 2024)We consider the inverse problem of recovering a potential from the Dirichlet to Neumann map at a large fixed frequency on certain Riemannian manifolds. We extend the earlier result of Uhlmann and Wang [arXiv:2104.03477] ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
Krupchyk, Katya; Liimatainen, Tony; Salo, Mikko (Elsevier Inc., 2022)In this article we study the linearized anisotropic Calderón problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a ... -
The Linearized Calderón Problem on Complex Manifolds
Guillarmou, Colin; Salo, Mikko; Tzou, Leo (Springer, 2019)In this note we show that on any compact subdomain of a K¨ahler manifold that admits sufficiently many global holomorphic functions, the products of harmonic functions form a complete set. This gives a positive answer to ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.