Improved hardy inequalities on Riemannian manifolds
Mohanta, K., & Tyagi, J. (2023). Improved hardy inequalities on Riemannian manifolds. Complex Variables and Elliptic Equations, Early online. https://doi.org/10.1080/17476933.2023.2247998
Julkaistu sarjassa
Complex Variables and Elliptic EquationsPäivämäärä
2023Tekijänoikeudet
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
We study the following version of Hardy-type inequality on a domain Ω in a Riemannian manifold (M,g):
∫Ω|∇u|pgραdVg≥(|p−1+β|p)p∫Ω|u|p|∇ρ|pg|ρ|pραdVg+∫ΩV|u|pραdVg,∀u∈C∞c(Ω).
We provide sufficient conditions on p,α,β,ρ and V for which the above inequality holds. This generalizes earlier well-known works on Hardy inequalities on Riemannian manifolds. The functional setup covers a wide variety of particular cases, which are discussed briefly: for example, RN with p
Julkaisija
Taylor & FrancisISSN Hae Julkaisufoorumista
1747-6933Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184294331
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Authors thank IIT Gandhinagar for the financial support under the grant MIS/IITGN/R&D/MA/JT/202122/069.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
Le Donne, Enrico; Lučić, Danka; Pasqualetto, Enrico (Springer, 2023)We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations ... -
Stable reconstruction of simple Riemannian manifolds from unknown interior sources
de Hoop, Maarten V.; Ilmavirta, Joonas; Lassas, Matti; Saksala, Teemu (IOP Publishing, 2023)Consider the geometric inverse problem: there is a set of delta-sources in spacetime that emit waves travelling at unit speed. If we know all the arrival times at the boundary cylinder of the spacetime, can we reconstruct ... -
Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
Krupchyk, Katya; Liimatainen, Tony; Salo, Mikko (Elsevier Inc., 2022)In this article we study the linearized anisotropic Calderón problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a ... -
Translating Solitons Over Cartan–Hadamard Manifolds
Casteras, Jean-Baptiste; Heinonen, Esko; Holopainen, Ilkka; De Lira, Jorge H. (Springer Science and Business Media LLC, 2023)We prove existence results for entire graphical translators of the mean curvature flow (the so-called bowl solitons) on Cartan–Hadamard manifolds. We show that the asymptotic behavior of entire solitons depends heavily on ... -
The anisotropic Calderón problem at large fixed frequency on manifolds with invertible ray transform
Ma, Shiqi; Sahoo, Suman Kumar; Salo, Mikko (Wiley, 2024)We consider the inverse problem of recovering a potential from the Dirichlet to Neumann map at a large fixed frequency on certain Riemannian manifolds. We extend the earlier result of Uhlmann and Wang [arXiv:2104.03477] ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.