dc.contributor.author | Koskela, Pekka | |
dc.contributor.author | Nguyen, Khanh | |
dc.date.accessioned | 2024-02-26T10:04:28Z | |
dc.date.available | 2024-02-26T10:04:28Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Koskela, P., & Nguyen, K. (2023). Existence and uniqueness of limits at infinity for homogeneous Sobolev functions. <i>Journal of Functional Analysis</i>, <i>285</i>(11), Article 110154. <a href="https://doi.org/10.1016/j.jfa.2023.110154" target="_blank">https://doi.org/10.1016/j.jfa.2023.110154</a> | |
dc.identifier.other | CONVID_184549146 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/93660 | |
dc.description.abstract | We establish the existence and uniqueness of limits at infinity along infinite curves outside a zero modulus family for functions in a homogeneous Sobolev space under the assumption that the underlying space is equipped with a doubling measure which supports a Poincaré inequality. We also characterize the settings where this conclusion is nontrivial. Secondly, we introduce notions of weak polar coordinate systems and radial curves on metric measure spaces. Then sufficient and necessary conditions for existence of radial limits are given. As a consequence, we characterize the existence of radial limits in certain concrete settings. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Journal of Functional Analysis | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | limit at infinity | |
dc.subject.other | Sobolev function | |
dc.subject.other | metric measure space | |
dc.title | Existence and uniqueness of limits at infinity for homogeneous Sobolev functions | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202402262125 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Analyysin ja dynamiikan tutkimuksen huippuyksikkö | fi |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Analysis and Dynamics Research (Centre of Excellence) | en |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0022-1236 | |
dc.relation.numberinseries | 11 | |
dc.relation.volume | 285 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2023 Elsevier Inc. All rights reserved. | |
dc.rights.accesslevel | embargoedAccess | fi |
dc.relation.grantnumber | 323960 | |
dc.subject.yso | funktionaalianalyysi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17780 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.jfa.2023.110154 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | Both authors have been supported by the Academy of Finland Grant number 323960. | |
dc.type.okm | A1 | |