Existence and uniqueness of limits at infinity for homogeneous Sobolev functions
Koskela, P., & Nguyen, K. (2023). Existence and uniqueness of limits at infinity for homogeneous Sobolev functions. Journal of Functional Analysis, 285(11), Article 110154. https://doi.org/10.1016/j.jfa.2023.110154
Julkaistu sarjassa
Journal of Functional AnalysisPäivämäärä
2023Oppiaine
Analyysin ja dynamiikan tutkimuksen huippuyksikköMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)MathematicsPääsyrajoitukset
Embargo päättyy: 2025-12-01Pyydä artikkeli tutkijalta
Tekijänoikeudet
© 2023 Elsevier Inc. All rights reserved.
We establish the existence and uniqueness of limits at infinity along infinite curves outside a zero modulus family for functions in a homogeneous Sobolev space under the assumption that the underlying space is equipped with a doubling measure which supports a Poincaré inequality. We also characterize the settings where this conclusion is nontrivial. Secondly, we introduce notions of weak polar coordinate systems and radial curves on metric measure spaces. Then sufficient and necessary conditions for existence of radial limits are given. As a consequence, we characterize the existence of radial limits in certain concrete settings.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0022-1236Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184549146
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
Both authors have been supported by the Academy of Finland Grant number 323960.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Tensorization of quasi-Hilbertian Sobolev spaces
Eriksson-Bique, Sylvester; Rajala, Tapio; Soultanis, Elefterios (EMS Press, 2024)The tensorization problem for Sobolev spaces asks for a characterization of how the Sobolev space on a product metric measure space X Y can be determined from its factors. We show that two natural descriptions of the Sobolev ... -
Differential of metric valued Sobolev maps
Gigli, Nicola; Pasqualetto, Enrico; Soultanis, Elefterios (Elsevier, 2020)We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove ... -
Tensorization of p-weak differentiable structures
Eriksson-Bique, Sylvester; Rajala, Tapio; Soultanis, Elefterios (Elsevier, 2024)We consider p-weak differentiable structures that were recently introduced in [9], and prove that the product of p-weak charts is a p-weak chart. This implies that the product of two spaces with a p-weak differentiable ... -
Sobolev, BV and perimeter extensions in metric measure spaces
Caputo, Emanuele; Koivu, Jesse; Rajala, Tapio (Suomen matemaattinen yhdistys, 2024)We study extensions of sets and functions in general metric measure spaces. We show that an open set has the strong BV-extension property if and only if it has the strong extension property for sets of finite perimeter. ... -
Pointwise inequalities for Sobolev functions on generalized cuspidal domains
Zhu, Zheng (Finnish Mathematical Society, 2022)Olkoon Ω⊂Rn−1 rajoitettu tähtimäinen alue ja Ωψ ulkoneva kärkialue, jonka kanta-alue on Ω. Arvoilla 1< p≤ ∞ osoitamme, että W1,p(Ωψ) = M1,p(Ωψ) jos ja vain jos W1,p(Ω) = M1,p(Ω).
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.