Filling minimality and Lipschitz-volume rigidity of convex bodies among integral current spaces
Basso, G., Creutz, P., & Soultanis, E. (2023). Filling minimality and Lipschitz-volume rigidity of convex bodies among integral current spaces. Journal für die reine und angewandte Mathematik, 2023(805), 213-239. https://doi.org/10.1515/crelle-2023-0076
Julkaistu sarjassa
Journal für die reine und angewandte MathematikPäivämäärä
2023Tekijänoikeudet
© 2023 De Gruyter
In this paper we consider metric fillings of boundaries of convex bodies. We show that convex bodies are the unique minimal fillings of their boundary metrics among all integral current spaces. To this end, we also prove that convex bodies enjoy the Lipschitz-volume rigidity property within the category of integral current spaces, which is well known in the smooth category. As further applications of this result, we prove a variant of Lipschitz-volume rigidity for round spheres and answer a question of Perales concerning the intrinsic flat convergence of minimizing sequences for the Plateau problem.
Julkaisija
De GruyterISSN Hae Julkaisufoorumista
0075-4102Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/194285036
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On the reflexivity properties of Banach bundles and Banach modules
Lučić, Milica; Pasqualetto, Enrico; Vojnović, Ivana (Birkhäuser, 2024)In this paper, we investigate some reflexivity-type properties of separable measurable Banach bundles over a σ-finite measure space. Our two main results are the following: • The fibers of a bundle are uniformly convex ... -
Yet another proof of the density in energy of Lipschitz functions
Lučić, Danka; Pasqualetto, Enrico (Springer, 2024)We provide a new, short proof of the density in energy of Lipschitz functions into the metric Sobolev space defined by using plans with barycenter (and thus, a fortiori, into the Newtonian–Sobolev space). Our result covers ... -
On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups
Fässler, Katrin; Le Donne, Enrico (Springer, 2021)This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give ... -
Lipschitz Functions on Submanifolds of Heisenberg Groups
Julia, Antoine; Nicolussi Golo, Sebastiano; Vittone, Davide (Oxford University Press (OUP), 2023)We study the behavior of Lipschitz functions on intrinsic C1 submanifolds of Heisenberg groups: our main result is their almost everywhere tangential Pansu differentiability. We also provide two applications: a Lusin-type ... -
Nilpotent Groups and Bi-Lipschitz Embeddings Into L1
Eriksson-Bique, Sylvester; Gartland, Chris; Le Donne, Enrico; Naples, Lisa; Nicolussi Golo, Sebastiano (Oxford University Press (OUP), 2023)We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an L1 space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into L1 is ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.