Yet another proof of the density in energy of Lipschitz functions
Lučić, D., & Pasqualetto, E. (2024). Yet another proof of the density in energy of Lipschitz functions. Manuscripta Mathematica, Early online. https://doi.org/10.1007/s00229-024-01562-2
Julkaistu sarjassa
Manuscripta MathematicaPäivämäärä
2024Tekijänoikeudet
© The Author(s) 2024
We provide a new, short proof of the density in energy of Lipschitz functions into the metric Sobolev space defined by using plans with barycenter (and thus, a fortiori, into the Newtonian–Sobolev space). Our result covers first-order Sobolev spaces of exponent p ∈ (1,∞), defined over a complete separable metric space endowed with a boundedlyfinite Borel measure. Our proof is based on a completely smooth analysis: first we reduce the problem to the Banach space setting, where we consider smooth functions instead of Lipschitz ones, then we rely on classical tools in convex analysis and on the superposition principle for normal 1-currents. Along the way, we obtain a new proof of the density in energy of smooth cylindrical functions in Sobolev spaces defined over a separable Banach space endowed with a finite Borel measure.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0025-2611Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/213520052
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The second named author is supported by the MIUR-PRIN 202244A7YL project “Gradient Flows and Non-Smooth Geometric Structures with Applications to Optimization and Machine Learning”. Open Access funding provided by University of Jyväskylä (JYU).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Density of Lipschitz functions in energy
Eriksson-Bique, Sylvester (Springer Science and Business Media LLC, 2023)In this paper, we show that the density in energy of Lipschitz functions in a Sobolev space N1,p(X) holds for all p∈[1,∞) whenever the space X is complete and separable and the measure is Radon and positive and finite on ... -
Nilpotent Groups and Bi-Lipschitz Embeddings Into L1
Eriksson-Bique, Sylvester; Gartland, Chris; Le Donne, Enrico; Naples, Lisa; Nicolussi Golo, Sebastiano (Oxford University Press (OUP), 2023)We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an L1 space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into L1 is ... -
Lipschitz Functions on Submanifolds of Heisenberg Groups
Julia, Antoine; Nicolussi Golo, Sebastiano; Vittone, Davide (Oxford University Press (OUP), 2023)We study the behavior of Lipschitz functions on intrinsic C1 submanifolds of Heisenberg groups: our main result is their almost everywhere tangential Pansu differentiability. We also provide two applications: a Lusin-type ... -
Impact of the surface energy coefficient on the deformation properties of atomic nuclei as predicted by Skyrme energy density functionals
Ryssens, W.; Bender, M.; Bennaceur, Karim; Heenen, P.-H.; Meyer, J. (American Physical Society, 2019)Background: In the framework of nuclear energy density functional (EDF) methods, many nuclear phenomena are related to the deformation of intrinsic states. Their accurate modeling relies on the correct description of the ... -
Polarization corrections to single-particle energies studied within the energy-density-functional and quasiparticle random-phase approximation approaches
Tarpanov, D.; Toivanen, Jussi; Dobaczewski, Jacek; Carlsson, B. G. (American Physical Society, 2014)Background: Models based on using perturbative polarization corrections and mean-field blocking approxima- tion give conflicting results for masses of odd nuclei. Purpose: We systematically investigate the polarization ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.