Lipschitz Functions on Submanifolds of Heisenberg Groups
Julia, A., Nicolussi Golo, S., & Vittone, D. (2023). Lipschitz Functions on Submanifolds of Heisenberg Groups. International Mathematics Research Notices, 2023(9), 7399-7422. https://doi.org/10.1093/imrn/rnac066
Julkaistu sarjassa
International Mathematics Research NoticesPäivämäärä
2023Tekijänoikeudet
© The Author(s) 2022. Published by Oxford University Press.
We study the behavior of Lipschitz functions on intrinsic C1 submanifolds of Heisenberg groups: our main result is their almost everywhere tangential Pansu differentiability. We also provide two applications: a Lusin-type approximation of Lipschitz functions on H-rectifiable sets and a coarea formula on H-rectifiable sets that completes the program started in [18].
Julkaisija
Oxford University Press (OUP)ISSN Hae Julkaisufoorumista
1073-7928Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/147107025
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This work was supported by University of Padova STARS Project “Sub-Riemannian Geometry and Geometric Measure Theory Issues: Old and New”; the Simons Foundation [grant 601941 to A. J.]; the Academy of Finland [grants 322898 “Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory” and 314172 “Quantitative rectifiability in Euclidean and non-Euclidean spaces” to S. N. G.]; FFABR 2017 of MIUR (Italy); and GNAMPA of INdAM (Italy) to [D. V.]. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Nilpotent Groups and Bi-Lipschitz Embeddings Into L1
Eriksson-Bique, Sylvester; Gartland, Chris; Le Donne, Enrico; Naples, Lisa; Nicolussi Golo, Sebastiano (Oxford University Press (OUP), 2023)We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an L1 space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into L1 is ... -
Sub-Finsler Horofunction Boundaries of the Heisenberg Group
Fisher, Nate; Nicolussi Golo, Sebastiano (De Gruyter, 2021)We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop ... -
Counting and equidistribution in quaternionic Heisenberg groups
Parkkonen, Jouni; Paulin, Frédéric (Cambridge University Press (CUP), 2022)We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially ... -
Nowhere differentiable intrinsic Lipschitz graphs
Julia, Antoine; Nicolussi Golo, Sebastiano; Vittone, Davide (Wiley, 2021)We construct intrinsic Lipschitz graphs in Carnot groups with the property that, at every point, there exist infinitely many different blow-up limits, none of which is a homogeneous subgroup. This provides counterexamples ... -
On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups
Fässler, Katrin; Le Donne, Enrico (Springer, 2021)This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.