Magnetic fractional Poincaré inequality in punctured domains
Bal, K., Mohanta, K., & Roy, P. (2024). Magnetic fractional Poincaré inequality in punctured domains. Journal of Mathematical Analysis and Applications, 535(1), Article 128103. https://doi.org/10.1016/j.jmaa.2024.128103
Julkaistu sarjassa
Journal of Mathematical Analysis and ApplicationsPäivämäärä
2024Tekijänoikeudet
© 2024 The Author(s). Published by Elsevier Inc.
We study Poincaré-Wirtinger type inequalities in the framework of magnetic fractional Sobolev spaces. In the local case, Lieb et al. (2003) [19] showed that, if a bounded domain Ω is the union of two disjoint sets Γ and Λ, then the Lp-norm of a function calculated on Ω is dominated by the sum of magnetic seminorms of the function, calculated on Γ and Λ separately. We show that the straightforward generalisation of their result to nonlocal setup does not hold true in general. We provide an alternative formulation of the problem for the nonlocal case. As an auxiliary result, we also show that the set of eigenvalues of the magnetic fractional Laplacian is discrete.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0022-247XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/202055177
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
Research work of the first author is funded by Matrics grant (MTR/2020/000594). Research work of the second author is funded by Academy of Finland (Suomen Akatemia) grant: Geometrinen Analyysi (21000046081). Research work of the third author is funded by Matrics grant (MTR/2019/000585) and by Core Research Grant (CRG/2022/007867) of SERB.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse (American Institute of Mathematical Sciences (AIMS), 2021)We prove a unique continuation property for the fractional Laplacian (−Δ)s when s∈(−n/2,∞)∖Z where n≥1. In addition, we study Poincaré-type inequalities for the operator (−Δ)s when s≥0. We apply the results to show that ... -
Lineaariset toisen asteen hyperboliset osittaisdifferentiaaliyhtälöt
Kauppinen, Matti (2022)Tässä työssä tutkitaan toisen asteen lineaarisia hyperbolisia osittaisdifferentiaaliyhtälöitä. Toisen asteen lineaariset hyperboliset osittaisdifferentiaaliyhtälöt ovat luonnollinen yleistys aaltoyhtälölle $$u_{tt} + \Delta ... -
Pointwise inequalities for Sobolev functions on generalized cuspidal domains
Zhu, Zheng (Finnish Mathematical Society, 2022)Olkoon Ω⊂Rn−1 rajoitettu tähtimäinen alue ja Ωψ ulkoneva kärkialue, jonka kanta-alue on Ω. Arvoilla 1< p≤ ∞ osoitamme, että W1,p(Ωψ) = M1,p(Ωψ) jos ja vain jos W1,p(Ω) = M1,p(Ω). -
The volume of the boundary of a Sobolev (p,q)-extension domain
Koskela, Pekka; Ukhlov, Alexander; Zhu, Zheng (Elsevier, 2022)Let n≥2 and $1\leq q<p><\fz$. We prove that if Ω⊂Rn is a Sobolev (p,q)-extension domain, with additional capacitory restrictions on boundary in the case q≤n−1, n>2, then |∂Ω|=0. In the case 1≤q0.</p> -
A maximal Function Approach to Two-Measure Poincaré Inequalities
Kinnunen, Juha; Korte, Riikka; Lehrbäck, Juha; Vähäkangas, Antti (Springer New York, 2019)This paper extends the self-improvement result of Keith and Zhong in Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincaré inequality for ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.