dc.contributor.author | Bal, Kaushik | |
dc.contributor.author | Mohanta, Kaushik | |
dc.contributor.author | Roy, Prosenjit | |
dc.date.accessioned | 2024-01-25T12:30:04Z | |
dc.date.available | 2024-01-25T12:30:04Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Bal, K., Mohanta, K., & Roy, P. (2024). Magnetic fractional Poincaré inequality in punctured domains. <i>Journal of Mathematical Analysis and Applications</i>, <i>535</i>(1), Article 128103. <a href="https://doi.org/10.1016/j.jmaa.2024.128103" target="_blank">https://doi.org/10.1016/j.jmaa.2024.128103</a> | |
dc.identifier.other | CONVID_202055177 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/93060 | |
dc.description.abstract | We study Poincaré-Wirtinger type inequalities in the framework of magnetic fractional Sobolev spaces. In the local case, Lieb et al. (2003) [19] showed that, if a bounded domain Ω is the union of two disjoint sets Γ and Λ, then the Lp-norm of a function calculated on Ω is dominated by the sum of magnetic seminorms of the function, calculated on Γ and Λ separately. We show that the straightforward generalisation of their result to nonlocal setup does not hold true in general. We provide an alternative formulation of the problem for the nonlocal case. As an auxiliary result, we also show that the set of eigenvalues of the magnetic fractional Laplacian is discrete. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Journal of Mathematical Analysis and Applications | |
dc.rights | CC BY 4.0 | |
dc.subject.other | fractional Poincaré inequality | |
dc.subject.other | magnetic fractional Sobolev space | |
dc.subject.other | magnetic fractional Laplacian | |
dc.title | Magnetic fractional Poincaré inequality in punctured domains | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202401251548 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0022-247X | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 535 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 The Author(s). Published by Elsevier Inc. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 323960 | |
dc.subject.yso | epäyhtälöt | |
dc.subject.yso | funktionaalianalyysi | |
dc.subject.yso | funktiot | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15720 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17780 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7097 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12392 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.jmaa.2024.128103 | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Research Council of Finland | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundinginformation | Research work of the first author is funded by Matrics grant (MTR/2020/000594). Research work of the second author is funded by Academy of Finland (Suomen Akatemia) grant: Geometrinen Analyysi (21000046081). Research work of the third author is funded by Matrics grant (MTR/2019/000585) and by Core Research Grant (CRG/2022/007867) of SERB. | |
dc.type.okm | A1 | |