Consistency of the Flat Flow Solution to the Volume Preserving Mean Curvature Flow
Julin, V., & Niinikoski, J. (2024). Consistency of the Flat Flow Solution to the Volume Preserving Mean Curvature Flow. Archive for Rational Mechanics and Analysis, 248(1), Article 1. https://doi.org/10.1007/s00205-023-01944-y
Julkaistu sarjassa
Archive for Rational Mechanics and AnalysisPäivämäärä
2024Tekijänoikeudet
© The Author(s) (2023)
We consider the flat flow solution, obtained via a discrete minimizing movement scheme, to the volume preserving mean curvature flow starting from C1,1-regular set. We prove the consistency principle, which states that (any) flat flow solution agrees with the classical solution as long as the latter exists. In particular the flat flow solution is unique and smooth up to the first singular time. We obtain the result by proving the full regularity for the discrete time approximation of the flat flow such that the regularity estimates are stable with respect to the time discretization. Our method can also be applied in the case of the mean curvature flow and thus it provides an alternative proof, not relying on comparison principle, for the consistency between the flat flow solution and the classical solution for C1,1-regular initial sets.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0003-9527Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/194893167
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SALisätietoja rahoituksesta
Open Access funding provided by University of Jyväskylä (JYU). V.J. was supported by the Academy of Finland Grant 314227. J.N. was partially supported by ERC-CZ grant LL2105 and the University Centre UNCE/SCI/023 of Charles University.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Quantitative Alexandrov theorem and asymptotic behavior of the volume preserving mean curvature flow
Julin, Vesa; Niinikoski, Joonas (Mathematical Sciences Publishers, 2023)We prove a new quantitative version of the Alexandrov theorem which states that if the mean curvature of a regular set in Rn+1 is close to a constant in the Ln sense, then the set is close to a union of disjoint balls with ... -
Volume preserving mean curvature flows near strictly stable sets in flat torus
Niinikoski, Joonas (Elsevier BV, 2021)In this paper we establish a new stability result for smooth volume preserving mean curvature flows in flat torus T-n in dimensions n = 3, 4. The result says roughly that if an initial set is near to a strictly stable set ... -
Asymptotical behavior of volume preserving mean curvature flow and stationary sets of forced mean curvature flow
Niinikoski, Joonas (Jyväskylän yliopisto, 2021)The main subject of this dissertation is mean curvature type of flows, in particular the volume preserving mean curvature flow. A classical flow in this context is seen as a smooth time evolution of n-dimensional sets. An ... -
The asymptotics of the area-preserving mean curvature and the Mullins–Sekerka flow in two dimensions
Julin, Vesa; Morini, Massimiliano; Ponsiglione, Marcello; Spadaro, Emanuele (Springer, 2022)We provide the first general result for the asymptotics of the area preserving mean curvature flow in two dimensions showing that flat flow solutions, starting from any bounded set of finite perimeter, converge with ... -
Short time existence of the classical solution to the fractional mean curvature flow
Julin, Vesa; La Manna, Domenico Angelo (Elsevier, 2020)We establish short-time existence of the smooth solution to the fractional mean curvature flow when the initial set is bounded and C1,1-regular. We provide the same result also for the volume preserving fractional mean ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.