Quantitative Alexandrov theorem and asymptotic behavior of the volume preserving mean curvature flow
Julin, V., & Niinikoski, J. (2023). Quantitative Alexandrov theorem and asymptotic behavior of the volume preserving mean curvature flow. Analysis and PDE, 16(3), 679-710. https://doi.org/10.2140/apde.2023.16.679
Julkaistu sarjassa
Analysis and PDEPäivämäärä
2023Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© 2023 the Authors
We prove a new quantitative version of the Alexandrov theorem which states that if the mean curvature of a regular set in Rn+1 is close to a constant in the Ln sense, then the set is close to a union of disjoint balls with respect to the Hausdorff distance. This result is more general than the previous quantifications of the Alexandrov theorem, and using it we are able to show that in R2 and R3 a weak solution of the volume preserving mean curvature flow starting from a set of finite perimeter asymptotically convergences to a disjoint union of equisize balls, up to possible translations. Here by a weak solution we mean a flat flow, obtained via the minimizing movements scheme.
Julkaisija
Mathematical Sciences PublishersISSN Hae Julkaisufoorumista
2157-5045Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/183485861
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SALisätietoja rahoituksesta
This research was supported by the Academy of Finland grant 314227.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Volume preserving mean curvature flows near strictly stable sets in flat torus
Niinikoski, Joonas (Elsevier BV, 2021)In this paper we establish a new stability result for smooth volume preserving mean curvature flows in flat torus T-n in dimensions n = 3, 4. The result says roughly that if an initial set is near to a strictly stable set ... -
Consistency of the Flat Flow Solution to the Volume Preserving Mean Curvature Flow
Julin, Vesa; Niinikoski, Joonas (Springer, 2024)We consider the flat flow solution, obtained via a discrete minimizing movement scheme, to the volume preserving mean curvature flow starting from C1,1-regular set. We prove the consistency principle, which states that ... -
A quantitative second order estimate for (weighted) p-harmonic functions in manifolds under curvature-dimension condition
Liu, Jiayin; Zhang, Shijin; Zhou, Yuan (Elsevier, 2024)We build up a quantitative second-order Sobolev estimate of lnw for positive p-harmonic functions w in Riemannian manifolds under Ricci curvature bounded from below and also for positive weighted p-harmonic functions w in ... -
Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants
Julin, Vesa; Saracco, Giorgio (Suomen matemaattinen yhdistys ry, 2021)We provide a quantitative lower bound to the Cheeger constant of a set Ω in both the Euclidean and the Gaussian settings in terms of suitable asymmetry indexes. We provide examples which show that these quantitative estimates ... -
Short time existence of the classical solution to the fractional mean curvature flow
Julin, Vesa; La Manna, Domenico Angelo (Elsevier, 2020)We establish short-time existence of the smooth solution to the fractional mean curvature flow when the initial set is bounded and C1,1-regular. We provide the same result also for the volume preserving fractional mean ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.