The asymptotics of the area-preserving mean curvature and the Mullins–Sekerka flow in two dimensions
Julin, V., Morini, M., Ponsiglione, M., & Spadaro, E. (2022). The asymptotics of the area-preserving mean curvature and the Mullins–Sekerka flow in two dimensions. Mathematische Annalen, Early online. https://doi.org/10.1007/s00208-022-02497-3
Julkaistu sarjassa
Mathematische AnnalenPäivämäärä
2022Oppiaine
Analyysin ja dynamiikan tutkimuksen huippuyksikköMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)MathematicsTekijänoikeudet
© The Author(s) 2022
We provide the first general result for the asymptotics of the area preserving mean curvature flow in two dimensions showing that flat flow solutions, starting from any bounded set of finite perimeter, converge with exponential rate to a finite union of equally sized disjoint disks. A similar result is established also for the periodic two-phase Mullins–Sekerka flow.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0025-5831Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/160165252
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-CARE Agreement.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Asymptotical behavior of volume preserving mean curvature flow and stationary sets of forced mean curvature flow
Niinikoski, Joonas (Jyväskylän yliopisto, 2021)The main subject of this dissertation is mean curvature type of flows, in particular the volume preserving mean curvature flow. A classical flow in this context is seen as a smooth time evolution of n-dimensional sets. An ... -
Quantitative Alexandrov theorem and asymptotic behavior of the volume preserving mean curvature flow
Julin, Vesa; Niinikoski, Joonas (Mathematical Sciences Publishers, 2023)We prove a new quantitative version of the Alexandrov theorem which states that if the mean curvature of a regular set in Rn+1 is close to a constant in the Ln sense, then the set is close to a union of disjoint balls with ... -
Volume preserving mean curvature flows near strictly stable sets in flat torus
Niinikoski, Joonas (Elsevier BV, 2021)In this paper we establish a new stability result for smooth volume preserving mean curvature flows in flat torus T-n in dimensions n = 3, 4. The result says roughly that if an initial set is near to a strictly stable set ... -
Consistency of the Flat Flow Solution to the Volume Preserving Mean Curvature Flow
Julin, Vesa; Niinikoski, Joonas (Springer, 2024)We consider the flat flow solution, obtained via a discrete minimizing movement scheme, to the volume preserving mean curvature flow starting from C1,1-regular set. We prove the consistency principle, which states that ... -
Test of the Latent Dimension of a Spatial Blind Source Separation Model
Muehlmann, Christoph; Bachoc, Francois; Nordhausen, Klaus; Yi, Mengxi (Institute of Statistical Science, Academia Sinica, 2024)We assume a spatial blind source separation model in which the observed multivariate spatial data is a linear mixture of latent spatially uncorrelated random fields containing a number of pure white noise components. We ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.