Short time existence of the classical solution to the fractional mean curvature flow
Julin, V., & La Manna, D. A. (2020). Short time existence of the classical solution to the fractional mean curvature flow. Annales de l’Institut Henri Poincaré : Analyse Non Linéaire, 37(4), 983-1016. https://doi.org/10.1016/j.anihpc.2020.02.007
Julkaistu sarjassa
Annales de l’Institut Henri Poincaré : Analyse Non LinéairePäivämäärä
2020Oppiaine
Analyysin ja dynamiikan tutkimuksen huippuyksikköMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)MathematicsTekijänoikeudet
© 2020 Elsevier
We establish short-time existence of the smooth solution to the fractional mean curvature flow when the initial set is bounded and C1,1-regular. We provide the same result also for the volume preserving fractional mean curvature flow.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0294-1449Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/41784402
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SALisätietoja rahoituksesta
The first author was supported by the Academy of Finland grant 314227.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Gamma-convergence of Gaussian fractional perimeter
Carbotti, Alessandro; Cito, Simone; La Manna, Domenico Angelo; Pallara, Diego (De Gruyter, 2023)We prove the Γ-convergence of the renormalised Gaussian fractional s-perimeter to the Gaussian perimeter as s→1−. Our definition of fractional perimeter comes from that of the fractional powers of Ornstein–Uhlenbeck operator ... -
Quantitative Alexandrov theorem and asymptotic behavior of the volume preserving mean curvature flow
Julin, Vesa; Niinikoski, Joonas (Mathematical Sciences Publishers, 2023)We prove a new quantitative version of the Alexandrov theorem which states that if the mean curvature of a regular set in Rn+1 is close to a constant in the Ln sense, then the set is close to a union of disjoint balls with ... -
Flat flow solution to the mean curvature flow with volume constraint
Julin, Vesa (Walter de Gruyter GmbH, 2024)In this paper I will revisit the construction of a global weak solution to the volume preserving mean curvature flow via discrete minimizing movement scheme by Mugnai, Seis and Spadaro [L. Mugnai, C. Seis and E. Spadaro, ... -
Volume preserving mean curvature flows near strictly stable sets in flat torus
Niinikoski, Joonas (Elsevier BV, 2021)In this paper we establish a new stability result for smooth volume preserving mean curvature flows in flat torus T-n in dimensions n = 3, 4. The result says roughly that if an initial set is near to a strictly stable set ... -
Stability of Sobolev inequalities on Riemannian manifolds with Ricci curvature lower bounds
Nobili, Francesco; Violo, Ivan Yuri (Elsevier, 2024)We study the qualitative stability of two classes of Sobolev inequalities on Riemannian manifolds. In the case of positive Ricci curvature, we prove that an almost extremal function for the sharp Sobolev inequality is close ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.