Geometric Characterization of the Eyring–Kramers Formula
Avelin, B., Julin, V., & Viitasaari, L. (2023). Geometric Characterization of the Eyring–Kramers Formula. Communications in Mathematical Physics, 404, 401-437. https://doi.org/10.1007/s00220-023-04845-z
Julkaistu sarjassa
Communications in Mathematical PhysicsPäivämäärä
2023Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© The Author(s) 2023
In this paper we consider the mean transition time of an over-damped Brownian particle between local minima of a smooth potential. When the minima and saddles are non-degenerate this is in the low noise regime exactly characterized by the so called Eyring–Kramers law and gives the mean transition time as a quantity depending on the curvature of the minima and the saddle. In this paper we find an extension of the Eyring–Kramers law giving an upper bound on the mean transition time when both the minima/saddles are degenerate (flat) while at the same time covering multiple saddles at the same height. Our main contribution is a new sharp characterization of the capacity of two local minima as a ratio of two geometric quantities, i.e., the minimal cut and the geodesic distance.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0010-3616Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/188986345
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SALisätietoja rahoituksesta
Open access funding provided by Uppsala University. B.A. was supported by the Swedish Research Council dnr: 2019-04098. V.J. was supported by the Academy of Finland Grant 314227.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Area of intrinsic graphs and coarea formula in Carnot groups
Julia, Antoine; Nicolussi Golo, Sebastiano; Vittone, Davide (Springer Science and Business Media LLC, 2022)We consider submanifolds of sub-Riemannian Carnot groups with intrinsic C1 regularity (C1H). Our first main result is an area formula for C1H intrinsic graphs; as an application, we deduce density properties for Hausdorff ... -
Sectorial Mertens and Mirsky formulae for imaginary quadratic number fields
Parkkonen, Jouni; Paulin, Frédéric (Birkhäuser, 2024)We extend formulae of Mertens and Mirsky on the asymptotic behaviour of the usual Euler function to the Euler functions of principal rings of integers of imaginary quadratic number fields, giving versions in angular sectors ... -
Product formulas for multiple stochastic integrals associated with Lévy processes
Di Tella, Paolo; Geiss, Christel; Steinicke, Alexander (Springer, 2024)In the present paper, we obtain an explicit product formula for products of multiple integrals w.r.t. a random measure associated with a Lévy process. As a building block, we use a representation formula for products of ... -
Processing of English articles and the idiom principle : a re-examination of the phraseological perspective
Hartikainen, Tuomas (2018)Tämän maisterintutkielman tarkoitus oli replikaatiotutkimuksen avulla tarkastella aikaisemmassa tutkimuksessa esitettyä väitettä siitä, että englannin artikkelien käyttöä voi helpottaa niin kutsuttu idiomiprinsiippi, eli ... -
Determining an unbounded potential from Cauchy data in admissible geometries
Ferreira, David Dos Santos; Kenig, Carlos E.; Salo, Mikko (Taylor & Francis, 2013)In [4 Dos Santos Ferreira , D. , Kenig , C.E. , Salo , M. , Uhlmann , G. ( 2009 ). Limiting Carleman weights and anisotropic inverse problems . Invent. Math. 178 : 119 – 171 . [Crossref], [Web of Science ®], [Google ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.