Product formulas for multiple stochastic integrals associated with Lévy processes
Di Tella, P., Geiss, C., & Steinicke, A. (2024). Product formulas for multiple stochastic integrals associated with Lévy processes. Collectanea mathematica, Early online. https://doi.org/10.1007/s13348-024-00456-6
Julkaistu sarjassa
Collectanea mathematicaPäivämäärä
2024Tekijänoikeudet
© The Author(s) 2024
In the present paper, we obtain an explicit product formula for products of multiple integrals w.r.t. a random measure associated with a Lévy process. As a building block, we use a representation formula for products of martingales from a compensated-covariation stable family. This enables us to consider Lévy processes with both jump and Gaussian part. It is well known that for multiple integrals w.r.t. the Brownian motion such product formulas exist without further integrability conditions on the kernels. However, if a jump part is present, this is, in general, false. Therefore, we provide here sufficient conditions on the kernels which allow us to establish product formulas. As an application, we obtain explicit expressions for the expectation of products of iterated integrals, as well as for the moments and the cumulants for stochastic integrals w.r.t. the random measure. Based on these expressions, we show a central limit theorem for the long time behaviour of a class of stochastic integrals. Finally, we provide methods to calculate the number of summands in the product formula.
...
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0010-0757Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/243915280
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open access funding provided by Montanuniversität Leoben.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On Malliavin calculus and approximation of stochastic integrals for Lévy processes
Laukkarinen, Eija (University of Jyväskylä, 2012) -
Hölder regularity for stochastic processes with bounded and measurable increments
Arroyo, Ángel; Blanc, Pablo; Parviainen, Mikko (European Mathematical Society - EMS - Publishing House GmbH, 2023)We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete stochastic processes. Such expectations can also be described as solutions to a dynamic programming principle or as solutions ... -
Existence, uniqueness and comparison results for BSDEs with Lévy jumps in an extended monotonic generator setting
Geiss, Christel; Steinicke, Alexander (Shandong Daxue, 2018)We show that the comparison results for a backward SDE with jumps established in Royer (Stoch. Process. Appl 116: 1358–1376, 2006) and Yin and Mao (J. Math. Anal. Appl 346: 345–358, 2008) hold under more simplified ... -
Donsker-type theorem for BSDEs : Rate of convergence
Briand, Philippe; Geiss, Christel; Geiss, Stefan; Labart, Céline (International Statistical Institute, 2021)In this paper, we study in the Markovian case the rate of convergence in Wasserstein distance when the solution to a BSDE is approximated by a solution to a BSDE driven by a scaled random walk as introduced in Briand, ... -
Asymptotic Hölder regularity for the ellipsoid process
Arroyo, Ángel; Parviainen, Mikko (EDP Sciences, 2020)We obtain an asymptotic Hölder estimate for functions satisfying a dynamic programming principle arising from a so-called ellipsoid process. By the ellipsoid process we mean a generalization of the random walk where the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.