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Abstract: In this paper we consider the mean transition time of an over-damped Brow-
nian particle between local minima of a smooth potential. When the minima and saddles
are non-degenerate this is in the low noise regime exactly characterized by the so called
Eyring–Kramers law and gives the mean transition time as a quantity depending on
the curvature of the minima and the saddle. In this paper we find an extension of the
Eyring–Kramers law giving an upper bound on the mean transition time when both the
minima/saddles are degenerate (flat) while at the same time covering multiple saddles at
the same height. Our main contribution is a new sharp characterization of the capacity
of two local minima as a ratio of two geometric quantities, i.e., the minimal cut and the
geodesic distance.
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1. Introduction

In this paper we investigate the so called metastable exit times for the stochastic differ-
ential equation

dXt = −∇F(Xt )dt +

√
ε

2
dBt , (1.1)

where F is a smooth potential with many local minima and ε is a small number.
The main question of metastability is to determine how much time the process (1.1)

takes from going from one local minima to another one.We call these the metastable exit
times. This question has a rich history and in the double well case with non-degenerate
minima and a saddle point this is characterized by a formula called Eyring–Kramers law
[11,17] which can be stated as follows: Assume that x and y are quadratic local minima
of F , separated by a unique saddle z which is such that the Hessian has a single negative
eigenvalue λ1(z). Then the expected transition time τ from x to y satisfies

E
x [τ ] � 2π

|λ1(z)|

√
| det(∇2F(z))|
det(∇2F(x))

e(F(z)−F(x))/ε, (1.2)

where � denotes that the comparison constant tends to 1 as ε → 0.
The validity of the above formula has been studied, from a qualitative perspective,

quite extensively, starting from the work of Freidlin andWentzell. For more information,
see the book [12]. Roughly 15 years ago, Bovier et. al. produced a series of papers
[6–9] (see also [5]) which provided the first proof of (1.2) in the general setting of
Morse functions. Specifically, they showed that the comparison function is like 1 +
O(ε1/2| log ε|3/2). In these papers, they utilized the connection to classical potential
theory in order to reduce the problem of estimating metastable exit times to the problem
of estimating certain capacities sharply. This approach was later used in [4] to generalize
(1.2) to general polynomial type of degeneracies.

In this paper we are interested in estimating the metastable exit times in the case of
general type of degenerate critical points. This requires new techniques and effective
notation from geometric function theory which we will describe below. Our motivation
comes from the field of non-convex optimization where we cannot expect the min-
ima/saddles to be quadratic or even to have polynomial growth in any direction. In
particular, such situations are well known in the context of neural networks, where the
minima and saddles may be completely flat in some directions [15]. Furthermore, it
seems that they are preferrable, see [19] for a discussion, see also [3] for an explicit
example.

The main goal is to estimate the dependency of the metastable exit times with respect
to the geometry of the potential F . In the proof of (1.2) in [8] this is reduced to estimating
the ratio of the L1 norm of the hitting probability and the capacity. Thus in order to
estimate the metastable exit times, one needs to produce

(1) Estimates of the L1 integral of the hitting probability, i.e. the integral of capacitary
potentials with respect to the Gibbs measure.

(2) Estimates of the capacity itself, i.e. estimates of the energy of the capacitary poten-
tials.

The interesting point is that the influence of F on 1 and 2 is in a sense dual. Specifically,
the shape of minima of F influence 1 while the shape of saddles between minima
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influence 2. As is well known, the main difficulty is to estimate 2, which is an interesting
topic of its own.

Our main contribution is a sharp capacity estimate for a very general class of degen-
erate saddle points. In order to achieve this, we phrase the problem in the language of
geometric function theory, where the capacity estimates are a central topic [13,20]. We
introduce two geometric quantities which allow us to estimate the capacity in a sharp
and natural way. As a byproduct, we see that in the case of several saddle points at the
same height, the topology dictates how the local capacities add up. Here we resctrict
ourselves in two topological cases, which we call the parallel and the serial case, and it
turns out that the formulas for the total capacity have natural counterparts in electrical
networks of capacitors, see Theorem 1. Even in the context of non-degenerate saddles,
our formulas provide a generalization of the result of [8] where the authors consider
only the parallel case. As we mentioned, we allow the saddle points to be degenerate but
we have to assume that saddles are non-branching, see (1.6).

1.1. Assumptions and statement of the main results. In order to state our main results
we first need to introduce our assumptions on the potential F . We also need to introduce
notation from geometric function theory which might seem rather heavy at first, but
it turns out to be robust enough for us to treat the potentials with possible degenerate
critical points.

Let us first introduce some general terminology. We say that a critical point z of a
function f ∈ C1(Rn) is a local minimum (maximum) of f if f (x) ≥ f (z) ( f (x) ≤
f (z)) in a neighborhood of z. If f is not locally constant at a critical point z, then z is
a saddle point if it is not a local minimum / maximum. For technical reasons we also
allow saddle points to include points z where f is locally constant. We say that a local
minimum at z is proper if there exists a δ̂ > 0 such that for every 0 < δ < δ̂ there exists
a ρ such that

f (x) ≥ f (z) + δ for all x ∈ ∂Bρ(z),

where Bρ(z) denotes an open ball with radius ρ centered at z. When the center is at the
origin we use the short notation Bρ .

Let us then proceed to our assumptions on the potential F . Throughout the paper we
assume that F ∈ C2(Rn) and satisfies the following quadratic growth condition

F(x) ≥ |x |2
C0

− C0 (1.3)

for a constant C0 ≥ 1. We assume that every local minimum point z of F is proper, as
described above, and that there is a convex function Gz : R

n → R which has a proper
minimum at 0 with G(0) = 0 such that∣∣F(x + z) − F(z) − Gz(x)

∣∣ ≤ ω
(
Gz(x)

)
, (1.4)

where ω : [0,∞) → [0,∞) is a continuous and increasing function with

lim
s→0

ω(s)

s
= 0. (1.5)
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We denote by δ0 the largest number for which ω(δ) ≤ δ
8 for all δ ≤ 4δ0. We define a

neighborhood of the local minimum point z and δ < δ0 as

Oz,δ := {x ∈ R
n : Gz(x) < δ} + {z}.

For the saddles, we assume that for every saddle point z of F there are convex
functions gz : R → R and Gz : R

n−1 → R which have a proper minimum at 0 with
gz(0) = Gz(0) = 0, and that there exists an isometry1 Tz : R

n → R
n such that, denoting

x = (x1, x ′) ∈ R × R
n−1, it holds∣∣(F ◦ Tz)(x) − F(z) + gz(x1) − Gz(x

′)
∣∣ ≤ ω(gz(x1)) + ω(Gz(x

′)), (1.6)

where ω : [0,∞) → [0,∞) is as in (1.5). The assumption (1.6) allows the saddle
point to be degenerate, but we do not allow them to have many branches, i.e., the sets
{F < F(z)} ∩ Bρ(z) cannot have more than two components. Note that the convex
functions gz,Gz and the isometry Tz depend on z, while the function ω is the same for
all saddle points. We define a neighborhood of the saddle point z and δ < δ0 as

Oz,δ := Tz
(
{x1 ∈ R : gz(x1) < δ} × {x ′ ∈ R

n−1 : Gz(x
′) < δ}

)
, (1.7)

where Tz is the isometry in (1.6). Note that, since the saddle may be flat, we should talk
about sets rather than points. However, we adopt the convention that we always choose a
representative point from each saddle (set) and thus we may label the saddles by points
z1, z2, . . . . Moreover, we assume that there is a δ1 ≤ δ0 such that for δ < δ1 we have that
if z1 and z2 are two different saddle points, then their neighborhoods Oz1,3δ and Oz2,3δ
defined in (1.7) are disjoint. We assume the same for local minima (or more precisely,
the representative points of sets of local minima).

Let us then introduce the notation related to geometric function theory [13,20]. Let
us fix two disjoint sets A and B in a domain 
 (open and connected set). We say that a
smooth path γ : [0, 1] → R

n connects A and B in the domain 
 if

γ (0) ∈ A, γ (1) ∈ B and γ ([0, 1]) ⊂ 
.

We denote the set of all paths connecting A and B inside
 as C(A, B;
). We follow the
standard notation and define a dual object to this by saying that a smooth hypersurface
S ⊂ R

n (possibly with boundary) separates A from B in
 if every path γ ∈ C(A, B;
)

intersects S. We denote the set of smooth hypersurfaces, separating A and B inside 


as S(A, B;
). We define the geodesic distance between A and B in 
 as

dε(A, B;
) := inf

(∫ 1

0
|γ ′(t)|e F(γ (t))

ε : γ ∈ C(A, B;
)

)
(1.8)

and its dual, which we call the minimal cut, by

Vε(A, B;
) := inf

(∫
S
e− F(x)

ε dHn−1(x) : S ∈ S(A, B;
)

)
. (1.9)

1 Recall that a mapping T is an isometry if |T (x)−T (y)| = |x− y|. InR
n , this implies that T (x) = Ax +b,

where A is an orthogonal matrix. That is, T consists of translation b and a rotation A.
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Fig. 1. The neighborhood Oz,δ of the saddle point z connects the sets Uxa and Uxb

Whenever
 = R
n we instead use the notation dε(A, B) and Vε(A, B). HereHk denotes

the k-dimensional Hausdorff measure. Finally, we define the communication height
between the sets A and B as

F(A; B) := inf
γ∈C(A,B;Rn)

sup
t∈[0,1]

F(γ (t)).

Let us then assume that xa and xb are local minimum points and denote the commu-
nication height between xa and xb as

F(xa; xb) := F({xa}; {xb}).
Notice that F(xa), F(xb) ≤ F(xa; xb). For s ∈ R, denote

Us := {x ∈ R
n : F(x) < F(xa; xb) + s}.

Assuming that 0 < δ ≤ δ1, We note that the points xa and xb lie in different components
of the set U−δ/3 while they are in the same component of the set Uδ/3. We will always
denote the components ofU−δ/3 containing the points xa and xb byUxa andUxb , respec-
tively. It is important to notice that if z is a saddle point and F(z) < F(xa; xb) + δ/3,
then the neighborhood Oz,δ defined in (1.7) intersects the set U−δ/3. We will some-
times call the components of the set U−δ/3 islands and the neighborhoods Oz,δ bridges
since we may connect islands with bridges, see Fig. 1. (The terminology is obviously
taken from the Seven Bridges of Königsberg). We say that the set of saddle points
Zxa ,xb = {z1, . . . , zN } charge capacity if it is the smallest set with the property that ev-
ery γ ∈ C(Bε(xa), Bε(xa);Uδ/3) intersects the bridge Ozi ,δ , defined in (1.7), for some
zi ∈ Zxa ,xb . In particular, it holds that Zxa ,xb ⊂ Uδ/3.

We will focus on two different topological situations, where the saddle points in
Zxa ,xb are either parallel or in series. We say that the points in Zxa ,xb are parallel if for
every zi ∈ Zxa ,xb there is a path

γ ∈ C(Bε(xa), Bε(xb);Uδ/3)

passing only through zi . We say that the points in Zxa ,xb are in series if every path
γ ∈ C(Bε(xa), Bε(xb);Uδ/3) passes through the bridge Ozi ,δ , defined in (1.7), for all
zi ∈ Zxa ,xb . In other words, if the points in Zxa ,xb = {z1, . . . , zN } are parallel, then the
islands occupied by the points xa and xb respectively are connected with N bridges and
we need to pass only one to get from xa to xb. If they are in series, then we have to pass
all N bridges in order to get from xa to xb, see Fig. 2.
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Fig. 2. Left picture is the parallel case and the right is the series case

Recall that Uxa and Uxb denote the islands, i.e., the components of U−δ/3, which
contain the points xa and xb. If the points in Zxa ,xb = {z1, . . . , zN } are parallel, then it
follows from our assumptions on F that we may connect Uxa and Uxb with one bridge,
i.e., for every zi the set

Uzi ,δ := Ozi ,δ ∪Uxa ∪Uxb (1.10)

is connected, again see Fig. 1. Then all paths γ ∈ C(Bε(xa), Bε(xb);Uzi ,δ) pass through
the bridge Ozi ,δ . If the points in Zxa ,xb are in series, then it is useful to order them
Zxa ,xb = {z1, . . . , zN } as follows. Let us consider a path γ ∈ C(Bε(xa), Bε(xb);Uδ/3)

which passes through each point in Zxa ,xb precisely once. This means that there are

0 < t1 < · · · < tN < 1 such that γ (ti ) = zi , (1.11)

which gives a natural ordering for points in Zxa ,xb . By the assumption (1.6), we also de-
duce that there are s1, . . . , sN−1 such that ti < si < ti+1 and min{F(γ (si )), F(γ (si+1))}
< F(zi+1) − δ/3. We denote

γ (si ) = xi , x0 = xa and xN = xb. (1.12)

The idea is that then every point xi lie in a different island, i.e., component of U−δ/3
which we denote by Uxi , see Fig. 2. We may also choose xi such that they are local
minimum points of F . Again it follows from our assumptions on F that the set 
 =⋃N

i=1 Ozi ,δ ∪Uxi ∪Uxa is connected.
We are now ready to state our main results. The first result is a quantitative lower

bound on the capacity between the sets Bε(xa) and Bε(xb), where xa and xb are two
local minimum points of F . For a given domain 
 ⊂ R

n we define the capacity of two
disjoint sets A, B ⊂ 
 with respect to the domain 
 as

cap(A, B;
) := inf

(
ε

∫



|∇u|2e− F
ε dx : u = 1 in A, u = 0 in B

)
.

Above, the infimum is taken over functions u ∈ W 1,2
loc (
). In the case
 = R

n we denote

cap(A, B) = cap(A, B; R
n)

for short.
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Finally, for functions f and g which depend continuously on ε > 0, we adopt the
notation

f (ε) � g(ε)

when there exists a constant C depending only on the data of the problem such that

(1 − η̂(C, ε)) f (ε) ≤ g(ε) ≤ (1 + η̂(C, ε)) f (ε),

where η̂(C, ·) is an increasing and continuous function η̂(C, ·) : [0,∞) → [0,∞) with
lims→0 η̂(C, ·) = 0. In all our estimates, the function η̂ is specified and depends only
on the function ω from (1.4) and (1.6). In order to define it, we first let 0 < ε ≤ δ0/2 be
fixed and let ε1(ε) be the unique solution to√

ω(ε1)ε1 = ε. (1.13)

From the assumption that ω(s) < s/2 for s < δ0 we see that ε < ε1. Furthermore, since
ω is increasing we get that ε1 → 0 as ε → 0. Now, from the definition of ε1 in (1.13)
we see, using lims→0

ω(s)
s = 0 and ε1 → 0 as ε → 0, that

ε1

ε
=

√
ε1√

ω(ε1)
→ ∞ as ε → 0.

On the other hand, again using the same facts, we see that

ω(ε1)

ε
=

√
ω(ε1)√

ε1
→ 0 as ε → 0.

Thus

lim
ε→0

ε1

ε
= ∞ and lim

ε→0

ω(ε1)

ε
= 0. (1.14)

In the following we will denote

η(x) = e−1/x xn and (1.15)

η̂(C, ε) = max
{
ε, η

(
C

ε1(ε)

ε

)}
. (1.16)

Finally, in our main theorems and our lemmas/propositions beyond Sect. 3 there is
a ball BR which contains all the level sets of interest. The existence of such a ball is
given by the quadratic growth condition (1.3). The constants in the estimates in our main
theorems and in Sect. 3 are unless otherwise stated, depending on n, ‖∇F‖BR , δ, R,C0,
specifically, this applies to the constants in η̂, and as such, gives precise meaning to
a � b.

Theorem 1. Assume that F satisfies the structural assumptions above. Let xa and xb be
two local minimum points of F and let Zxa ,xb = {z1, . . . , zN } be the set of saddle points
which charge capacity as defined above, and let 0 < δ ≤ δ1 be fixed. There exists an
0 < ε0 ≤ δ such that if 0 < ε ≤ ε0 the following holds:
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If the points in Zxa ,xb = {z1, . . . , zN } are parallel, then, using the notationUzi ,δ from
(1.10), it holds

cap(Bε(xa), Bε(xb)) �
N∑
i=1

cap(Bε(xa), Bε(xb);Uzi ,δ). (1.17)

Moreover for all i = 1, . . . , N we have the estimate

cap(Bε(xa), Bε(xb);Uzi ,δ) � ε
Vε(Bε(xa), Bε(xb);Uzi ,δ)

dε(Bε(xa), Bε(xb);Uzi ,δ)
e

F(zi )
ε ,

where dε(Bε(xa), Bε(xb);Uzi ,δ) and Vε(Bε(xa), Bε(xb);Uzi ,δ) are defined in (1.8) and
(1.9).

If the points in Zxa ,xb are in series, then, using the ordering z1, . . . , zN from (1.11)
for the points in Zxa ,xb and the points x0, x1, . . . , xN defined in (1.12), it holds

1

cap(Bε(xa), Bε(xb))
�

N∑
i=1

1

cap(Bε(xi−1), Bε(xi ))
, (1.18)

where we have the estimate

cap(Bε(xi−1), Bε(xi )) � ε
Vε(Bε(xi−1), Bε(xi ))

dε(Bε(xi−1), Bε(xi ))
e

F(zi )
ε

for all i = 1, . . . , N.

Let us make a few remarks on the statement of the above theorem. First, in the case
of a single saddle Zxa ,xb = {z} the above capacity estimate reduces to

cap(Bε(xa), Bε(xb)) � ε
Vε(Bε(xa), Bε(xb))

dε(Bε(xa), Bε(xb))
e

F(z)
ε ,

where dε(Bε(xa), Bε(xb)) is the geodesic distance between Bε(xa) and Bε(xa), and
Vε(Bε(xa), Bε(xb)) is the area of the ’smallest cross section’. This is in accordance with
the classical result on parallel plate capacitors, where the capacity depends linearly on
the area and is inversely proportional to their distance.

The statement (1.17), when the saddle points are parallel, means that each saddle
point z1, . . . , zN charges capacity and the total capacity is their sum. Again the situation
is the same as in the case of parallel plate capacitors with capacity C1, . . . ,CN , where
the total capacity is the sum

C = C1 + · · · + CN .

On the other hand, if the plate capacitors are in series their total capacity satisfies

1

C
= 1

C1
+ · · · + 1

CN

which is precisely the statement in (1.18).
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Using the assumption (1.6) we calculate in Proposition 4.1 and in Proposition 4.2
more explicit, but less geometric, formulas for the single saddle case in a domain 
.
Namely, we have

dε(Bε(xa), Bε(xb);
) � e
F(z)

ε

∫
R

e− gz (x1)

ε dx1

and

Vε(Bε(xa), Bε(xb);
) � e− F(z)
ε

∫
Rn−1

e− Gz (x ′)
ε dx ′,

and thus we recover the result in [4]. In particular, if the saddle point is non-degenerate,
i.e., gz and Gz are second order polynomials and the negative eigenvalue of ∇2F(z) is
−λ1, we may estimate

dε(Bε(xa), Bε(xb)) �
√
2πε

λ1
e

F(z)
ε

and

Vε(Bε(xa), Bε(xb)) � (2πε)
n−1
2

√
λ1 e− F(z)

ε√
det(∇2F(z))

.

In particular, we recover the classical formula (1.2).
Our second main theorem is an estimate on the so called metastable exit times.

However, in order to state it we need some further definitions. Assume that the local
minima of F are labelled xi and ordered such that F(xi ) ≤ F(x j ) if i ≤ j . We will
group the minima at the same level using the sets Gk , k = 1, . . . , K , i.e. xi , x j ∈ Gk
if F(xi ) = F(x j ), and x ∈ Gi and y ∈ G j , then F(x) < F(y) for i < j . We also
write F(Gi ) := F(x) with x ∈ Gi . Furthermore, we will denote Sk = ⋃k

i=1 Gi for
k = 1, . . . , K . We will also consider Gε

k = ⋃
x∈Gk

Bε(x) and Sε
k = ⋃k

i=1 G
ε
i .

In addition to the previous structural assumptions we assume further that for δ2 ≤ δ1
small enough, it holds

F(Gk+1) − F(Gk) ≥ δ2 (1.19)

for all k = 1, . . . , K . For a set A we denote τA the first hitting time of A of the process
(1.1), i.e. for Xt as in (1.1) we define

τA := inf{t ≥ 0 : Xt ∈ A}.
In our second theoremwe give an upper bound on the hitting time for the process defined
by (1.1) to go from a local minimum point in Gε

k+1 to a lower one in Sk .

Theorem 2. Assume that F satisfies the structural assumptions above, let
 be a domain
that contains Sε

k+1. There exists an 0 < ε0 ≤ δ2 such that if 0 < ε < ε0, the following
holds:

For x ∈ Gε
k+1 we have

E
x [τSε

k
IτSε

k
<τ
c ] ≤ Ce−F(Gk+1)/ε

∑
x∈Gk+1

|Ox,ε|
maxx∈Gk ,y∈Gε

k+1
cap(Bε(x), Bε(y);
)

+ Cεα/2.
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Let xa ∈ Gk, xb ∈ Gk+1 be a pair that maximizes the pairwise capacity. Then, with the
notation of Theorem 1, we get in the parallel case

E
x [τSε

k
IτSε

k
<τ
c ] ≤ ε−1Ce−F(Gk+1)/ε

∑
x∈Gk+1

|Ox,ε|∑N
i=1 e

−F(zi )/ε
Hn−1({Gzi <ε})
H1({gzi <ε})

+ Cεα/2,

and in the series case we get

E
x [τSε

k
IτSε

k
<τ
c ] ≤ C

ε

∑
x∈Gk+1

N∑
i=1

e(F(zi )−F(Gk+1))/ε
|Ox,ε|H1({gzi < ε})
Hn−1({Gzi < ε}) + Cεα/2.

The additive error in Theorem 2 can be removed for small ε as the right hand side of
the above tends to ∞ as ε → 0.

If both the minima and saddles are non-degenerate points, 
 = R
n and there is only

one saddle z connecting xa, xb (with F(xa) < F(z) < F(xb)), where xa, xb are the
only minima of F , then the above estimate coincides with Eyring–Kramers formula (up
to a constant)

E
xb [τBε(xa)] ≤ C

1

λ1

√
det(∇2F(z))

det(∇2F(xb))
e(F(z)−F(xb))/ε.

Here λ1 is the first eigenvalue of the Hessian of F at the saddle z.

2. Preliminaries

The generator of the process (1.1) is the following elliptic operator

Lε = −ε� + ∇F · ∇. (2.1)

In this section we study the potential and regularity theory associated with the operator
(2.1).We provide the identities and pointwise estimates that wewill need in the course of
the proofs. Most of these are standard, but we provide them adapted to our situation for
the reader’s convenience. We note that in this section we only require that the potential
F is of class C2 and satisfy the quadratic growth condition (1.3).

2.1. Potential theory.

Definition 2.1. Let
 ⊂ R
n be a regular domain and letG
(x, y)be theGreen’s function

for 
, i.e., for every f ∈ C(
) the function

u f =
∫




G
(x, y) f (y)dy

is the solution of the Poisson equation{
Lεu f = f in 


u f = 0 on ∂
.

The natural associated measures are the Gibbs measure dμε = e−F/εdx and the Gibbs
surface measure dσε = e−F/εdHn−1.
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Remark 2.2. Note that the Green’s function is symmetric w.r.t. the Gibbs measure, i.e.

G(x, y)e−F(x)/ε = G(y, x)e−F(y)/ε.

We also have the fundamental Green’s identities. Here we assume that 
 is a Lipschitz
domain and denote the inner normal by n.

Lemma 2.3. Let 
 be a smooth domain, ψ, φ be in C2(
), and G
 be the Green’s
function for 
. Then the following Green’s identities holds (Green’s first identity)∫




ψLεφ − ε∇ψ · ∇φdμε = ε

∫
∂


ψ∇φ · ndσε, (2.2)

and (Green’s second identity)∫



ψLεφ − φLεψdμε = ε

∫
∂


ψ∇φ · n − φ∇ψ · ndσε. (2.3)

Furthermore, the following (balayage) representation formula holds: for every g ∈
C(∂
) the function

u(x) = εeF(x)/ε
∫

∂


g∇yG
(y, x) · ndσε(y) (2.4)

is the solution of the Dirichlet problem{
Lεu = 0 in 


u = g on ∂
.

Proof. Integration by parts gives∫



ψLεφdμε =
∫




ψ(−ε�φ + ∇F · ∇φ)dμε

=
∫




(ε∇ψ · ∇φ − ε

ε
ψ∇F · ∇φ + ψ∇F · ∇φ)dμε

+ ε

∫
∂


ψ∇φ · ndσε

=
∫




ε∇ψ · ∇φdμε + ε

∫
∂


ψ∇φ · ndσε.

The second Green’s identity follows from the first by applying it twice∫



ψLεφ − ε∇ψ · ∇φdμε −
∫




φLεψ + ε∇ψ · ∇φdμε

= ε

∫
∂


ψ∇φ · ndσε − ε

∫
∂


φ∇ψ · ndσε.

We may now obtain the representation formula for the Dirichlet problem. We choose
φ(x) = G
(x, y) and obtain by Green’s second identity that

ψ(x)e−F(x)/ε − ε

∫
∂


ψ∇φ · ndσε =
∫




φLεψdμε.

Now relabeling x → y, we get the representation formula (2.4). ��
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Recall the definition of capacity (variational): for A, B ⊂ 
 two disjoint compact
sets

cap(A, B;
) := inf

(
ε

∫



|∇h|2e− F
ε dx : h ≥ 1 in A, u ∈ H1

0 (
 \ B)

)
. (2.5)

The extension of capacity to open sets follows in the classical way

cap(U, B;
) := sup{cap(A, B;
) : A compact and A ⊂ U }.
It iswell known that for bounded setswith regular boundary the continuity of the capacity
implies that cap(U, B;
) = cap(U , B;
). The extension w.r.t the second entry follows
similarly. The variational definition of the capacity has many equivalent forms, one that
we will need is the one below:

Lemma 2.4. Let A, B ⊂ 
 be two disjoint compact sets. Then the variational formula-
tion of capacity coincides with the balayage definition, i.e.,

cap(A, B;
) = sup

{∫
A
e−F(y)/εdμ(y) : suppμ ⊂ A,

∫



G
\B(x, y)dμ(y) ≤ 1

}
.

The unique measure which maximizes the above, i.e., satisfying∫
A
e−F(y)/εdμA,B(y) = cap(A, B;
),

∫



G
\B(x, y)dμ(y) ≤ 1,

is called the equilibrium measure μA,B. The corresponding equilibrium potential is
defined as hA,B = ∫



G
\B(x, y)dμA,B(y) and is the minimizer of (2.5).

If in addition A, B are smooth, then we have

cap(A, B;
) =
∫
A
e−F(y)/εdμA,B(y) = ε

∫
|∇hA,B |2dμε

= −ε

∫
∂A

∇hA,B · ndσε.

(2.6)

Proof. The claim follows from the symmetry of the Green’s function, Remark 2.2, and
the strong maximum principle that hA,B = 1 in A, see [1,10]. From (2.2) we get that∫


\B
hA,B LεhA,B − ε|∇hA,B |2dμε = ε

∫
∂(
\B)

hA,B∇hA,B · ndσε.

Using hA,B = 0 on ∂(
 \ B) we see that the right hand side of the above is zero.
Moreover, from LεhA,B = μA,B and from the definition of dμε we get∫

A
e−F(y)/εdμA,B(y) = ε

∫



|∇hA,B |2dμε. (2.7)

Note that since hA,B = 1 in A and 0 on ∂(
\B), and since LεhA,B = 0 in 
\(A ∪ B),
we have by the uniqueness of the solution to the Dirichlet problem that hA,B coincides
with the variational minimizer of (2.5). This establishes the first two equalities of (2.6).

To prove the last equality in (2.6) we insert hA,B = φ = ψ into (2.2) (Green’s first
identity) and get∫


\(A∪B)

hA,B LεhA,B − ε|∇hA,B |2dμε = ε

∫
∂(
\(A∪B))

hA,B∇hA,B · ndσε.
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Since suppμA,B ⊂ A, and hA,B = 0 on B and 1 on A, we get

− ε

∫



|∇hA,B |2dμε = ε

∫
∂A

∇hA,B · ndσε, (2.8)

where n is the outward unit normal of A. The result now follows from (2.7) and (2.8). ��
Definition 2.5. Let 
 be a smooth domain and A ⊂ 
. Then we define the potential of
the equilibrium potential as

wA,
(x) =
∫




G
\A(x, y)hA,
c (y)dy.

The definition of the potential of the equilibrium potential might seem technical at first.
However, wA,
 has a clear probabilistic interpretation as the expected hitting time of
hitting A of a process killed at ∂
. Indeed, the probabilistic interpretation of hA,
c is
P(τA < τ
c ) i.e. the probability of hitting A before 
c. By Dynkin’s formula we see
that then

wA,
(x) = E
x [wA,
(XτA∪
c )] − E

x
[∫ τA∪
c

0
LεwA,
(Xt )dt

]

=
∫ ∞

0
E
x
[
It≤τA∪
c E

Xt [IA(XτA∪
c )]
]
dt

=
∫ ∞

0
E
x [

It≤τA∪
c IA(XτA∪
c )
]
dt

= E
x [τAIτA<τ
c ].

We also have the following integration by parts formula for the potential of the
equilibrium potential:

Lemma 2.6. Let 
 be a smooth domain, let A ⊂ 
 be a smooth set, and assume that
B2ρ(x) ⊂ 
 \ A. Then∫

∂Bρ(x)
wA,
(y)e−F(y)/εdμBρ(x),A(y) =

∫

\A

hA,
c (z)hBρ(x),A(z)dμε.

The above statement looks more familiar if we write it in the formal way as∫

\A

wA,
(y)e−F(y)/εdLεhBρ,A(y) =
∫


\A
LεwA,
e

−F/εhBρ,Adz,

where dLεhBρ,A(y) is the equilibrium measure dμBρ(x),A(y).

Proof. Using the definition of wA,
 and Fubini’s theorem∫
∂Bρ(x)

wA,
(y)e−F(y)/εdμBρ(x),A(y)

=
∫

∂Bρ(x)

(∫

\A

G
\A(y, z)hA,
c (z)dz

)
e−F(y)/εdμBρ(x),A(y)

=
∫


\A
hA,
c(z)

∫
∂Bρ(x)

G
\A(y, z)e−F(y)/εdμBρ(x),A(y)dz.
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Using the symmetry of the Green’s function, Remark 2.2,∫

\A

hA,
c(z)
∫

∂Bρ(x)
G
\A(y, z)e−F(y)/εdμBρ(x),A(y)dz

=
∫


\A
hA,
c(z)e−F(z)/ε

∫
∂Bρ(x)

G
\A(z, y)dμBρ(x),A(y)dz.

Note that suppμBρ(x),A ⊂ ∂Bρ(x) and as such

u(z) =
∫




G
\A(z, y)dμBρ(x),A(y) =
∫

∂Bρ(x)
G
\A(z, y)dμBρ(x),A(y)

solves the equation Lεu = μBρ(x),A in 
 and u = 0 on ∂
 \ A. Consequently, by the
uniqueness result to the Dirichlet-Poisson problem, we get u(z) = hBρ(x),A(z). Hence∫


\A
hA,
c(z)e−F(z)/ε

∫
∂Bρ(x)

G
\A(z, y)dμBρ(x),A(y)dz

=
∫


\A
hA,
c(z)hBρ(x),A(z)dμε(z).

Combining the equalities above yields the result. ��

2.2. Classical pointwise estimates. In this sectionwe recall classical pointwise estimates
for functions which satisfy

Lεu = f

in a domain 
, where the operator Lε is defined in (2.1). First, since we assume that
F ∈ C2(Rn), then for all Hölder continuous f the solutions of the above equation are
C2,α-regular, see [14]. However, these regularity estimates depend on ε and blow up as
ε → 0. The point is that we may obtain regularity estimates for constants independent
of ε if we restrict ourselves on small enough scales. To this aim, for a given domain 


we choose a positive number ν such that

‖∇F‖L∞(
)

ε
≤ ν.

We have the following two theorems from [14].

Lemma 2.7 (Harnack’s inequality). Let 
 be a domain and let u ∈ C2(
) be a non-
negative function satisfying Lεu = 0. Then for any B3R(x) ⊂ 
 it holds that

sup
BR(x)

u ≤ C inf
BR(x)

u

for a constant C = C(n, νR). In particular, if ‖∇F‖L∞(
) ≤ L, then for R ≤ ε
L the

constant C is independent of ε. Furthermore, for p ∈ (1,∞) and any number k we have

sup
BR(x)

|u − k| ≤ Cp

(
⨏B2R(x)|u − k|pdx

)1/p
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and (
⨏B2R(x)|u|pdx

)1/p

≤ Cp inf
BR(x)

u,

where the symbol ⨏ denotes the average integral, and the constant Cp in addition to
above depends also on p.

In the non-homogeneous case Lεu = f we have the following generalization of Har-
nack’s inequality.

Lemma 2.8 Let
 be a domain and let u ∈ C2(
) be a non-negative function satisfying
Lεu = f . Then for any B3R(x) ⊂ 
 it holds that

sup
BR(x)

u ≤ C

(
inf
BR(x)

u +
R

ε
‖ f ‖Ln(B2R(x))

)

for a constant C = C(n, νR). In particular, if ‖∇F‖L∞(
) ≤ L, then for R ≤ ε
L the

constant C is independent of ε and we have

sup
BR(x)

u ≤ C

(
inf
BR(x)

u + ‖ f ‖Ln(B2R(x))

)
.

The Harnack inequality in Lemma 2.7 holds also in the case of the punctured ball.

Lemma 2.9. Let u ∈ C2(B3R(x) \ {x}) be a non-negative function satisfying Lεu = 0
in B3R(x)\{x}. Then

sup
∂BR(x)

u ≤ C inf
∂BR(x)

u

for a constant C = C(n, νR).

Proof. By translating the coordinates we may assume that x = 0. Let x0, y0 ∈ ∂BR
be such that sup∂BR(x) u = u(x0) and inf∂BR(x) u = u(y0). We choose points x1, . . . ,
xN−1, xN ∈ ∂BR such that |xi − xi−1| ≤ R/4 and xN = y0. Note that the number N is
bounded. Now we may use Harnack’s inequality Lemma 2.7 in balls BR/4(xi ) to get

u(xi−1) ≤ Cu(xi ).

We obtain the claim by applying the above over i = 1, . . . , N . ��
Lemma 2.10. Let 
 be a domain and let u, h ∈ C2(
) be non-negative functions such
that Lεu = h and h satisfies Harnack’s inequality with constant c0. Then the function
v = u + h satisfies Harnack’s inequality, i.e., for all B3R(x) ⊂ 
 it holds that

sup
BR(x)

v ≤ C inf
BR(x)

v

for a constant C = C(n, νR, R2/ε, c0). In particular, if ‖∇F‖L∞(
) ≤ L, then for
R ≤ min{ε/L ,

√
ε} the constant C is independent of ε.
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Proof. Again we may assume that x = 0. Using Lemma 2.8 and Harnack’s inequality
for h yields

sup
BR

u ≤ C inf
BR

u +
CR

ε
‖h‖Ln(B2R)

≤ C inf
BR

u +
CR

ε
|BR |1/n inf

BR
h

≤ C inf
BR

u +
CR2

ε
inf
BR

h.

Now, using Harnack’s inequality for h again, we obtain

sup
BR

v ≤ sup
BR

u + sup
BR

h ≤ C inf
BR

u + C inf
BR

h ≤ C inf
BR

v

for a constant C as in the statement. This proves the claim. ��
The Harnack’s inequality in Lemma 2.7 implies Hölder continuity for solutions of

Lεu = 0.

Lemma 2.11. Let u ∈ C2(B3R(x)) be a function such that for any constant c, for which
v = u + c is non-negative, the function v satisfies Harnack’s inequality with constant
C0, independent of c. Then there exists C = C(C0) > 1 and α = α(C0) ∈ (0, 1) such
that, for all ρ ≤ R, it holds that

oscBρ(x) u ≤ C
( ρ

R

)α

oscBR(x) u.

In particular, if u, h ∈ C2(
) are non-negative functions such that Lεu = h and h
satisfies Harnack’s inequality with constant C0, then u + h satisfies the estimate above.

Proof. The proof follows verbatim from the classical proof of Moser, see [14, Theorem
8.22]. ��

3. Technical Lemmas

In this section we provide some preliminary results for the proofs of the main theorems.
We recall that we assume that the potential F satisfies the structural assumptions from
Sect. 1.1, and that from this moment on our constants are allowed to depend on the data,
see paragraph after (1.16).

3.1. Rough estimates for potentials. In this subsection we provide estimates for the
capacitary potential hA,B , when A and B are two disjoint closed sets. The first estimate
is the so called renewal estimate of [8]. In order to trace dependencies of constants, we
provide a proof.

Lemma 3.1. Let 
 be a smooth domain, let A, B ⊂ 
 be disjoint smooth sets, and
consider hA,B as the capacitary potential in 
. Assume that B4�(x) ⊂ (
\(A ∪ B)),

and that r ≤ min

{
ε

‖∇F‖L∞(B2�(x))
, �

}
. Then there exists a constant C = C(n, ν) > 1

such that

hA,B(x) ≤ C
cap(Br (x), A;
)

cap(Br (x), B;
)
.
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Proof. Again, without loss of generality, we may assume that x = 0. Since hA,B∪Br =
hA,B on ∂(
\(A ∪ B)), we can use (2.4) to represent hA,B as follows

hA,B(z) = εeF(z)/ε
∫

∂(
\(A∪B))

hA,B∪Br ∇G
\(A∪B)(y, z) · ndσε(y). (3.1)

Now by Green’s second identity (2.3) in 
\(A ∪ B ∪ Br ) and (3.1) we see that, for
z ∈ 
,

hA,B(z) = hA,B∪Br (z)

−εeF(z)/ε
∫

∂Br
G
\(A∪B)(y, z)∇hA,B∪Br (y) · ndσε(y), (3.2)

where n is the inward unit normal of Br . First note that by (2.3) we can identify the
equilibrium measure as

μB∪Br ,A = −ε∇hB∪Br ,A · ndσε = ε∇hA,B∪Br · ndσε.

Using that hA,B∪Br = 1−hB∪Br ,A, together with the above and (3.2), we get for z ∈ Br
(since hA,B∪Br (z) = 0) that

hA,B(z) =
∫

∂Br
G
\(A∪B)(y, z)e

(F(z)−F(y))/εdμB∪Br ,A(y). (3.3)

First note that μBr∪B,A|∂Br is an admissible measure for cap(Br , A;
), which fol-
lows from the fact that by the comparison principle, the potentials for ordered measures
are ordered and the support ofμBr∪B,A|∂Br is in Br . To bound hA,B from above, note that
by the balayage representation of capacity (see Lemma 2.4) and the above, we obtain∫

∂Br
e−F(y)/εdμB∪Br ,A(y) ≤ cap(Br , A;
).

Applying the above to (3.3) gives, for z ∈ Br ,

hA,B(z) ≤ sup
y∈∂Br

G
\(A∪B)(y, z)e
F(z)/ε cap(Br , A;
). (3.4)

It remains to bound the Green’s function. For z ∈ Br we have by (2.4) and (2.6) and
Remark 2.2 that

1 = hBr ,A∪B(z) =
∫

∂Br
G
\(A∪B)(z, y)dμBr ,A∪B(y)

=
∫

∂Br
G
\(A∪B)(y, z)e

(F(z)−F(y))/εdμBr ,A∪B(y)

≥ inf
∂Br

G
\(A∪B)(y, z)e
F(z)/ε cap(Br , A ∪ B;
)

≥ inf
∂Br

G
\(A∪B)(y, z)e
F(z)/ε cap(Br , B;
).

(3.5)

Now putting together (3.4) and (3.5) and Lemma 2.9 we are done. ��
The result below is a version of the rough capacity bound of [8], but we give a

simplified proof. We will later use a similar argument in the proof of Theorem 1.
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Lemma 3.2. Let D ⊂ BR be a smooth closed set. Let x ∈ BR\D be such that B4ρ(x) ⊂
BR\D, for ρ ≤ ε. Then there exists constants q1, q2 ∈ R and C > 1 such that

1

C
εq1ρn−1e−F(x;D)/ε ≤ cap(Bρ(x), D) ≤ Cερq2e−F(x;D)/ε.

Proof. We assume without loss of generality that F(Bρ; D) = 0, since the quantities
can always be scaled back. Consider γ ∈ C(Bρ(x), D; BR) (i.e. a curve connecting
Bρ(x) and D inside BR) such that supt F(γ (t)) ≤ Cε and let u(z) = hD,Bρ(x)(z). We
first note by Lemma 2.4 that

cap(Bρ(x), D) = ε

∫
|∇u|2e−F(y)/εdy.

Fix an n − 1 dimensional disk Dρ of radius ρ. Then by Cauchy-Schwarz∫
BR

|∇u|2e−F(y)/εdy ≥
∫ 1

0

∫
Dρ

∣∣∣∣
〈

γ̇

|γ̇ | ,∇u(γ (t) + z)

〉∣∣∣∣
2

|γ̇ |dσε(z)dt.

By the fundamental theorem of calculus and Cauchy-Schwarz, we have for a fixed
point z ∈ Dρ that

1 = u(γ (1)) − u(γ (0)) =
∫ 1

0

d

dt
u(γ (t) + z)dt

=
∫ 1

0

d

dt
u(γ (t) + z)

√|γ̇ |√|γ̇ |e
−F(γ (t)+z)/(2ε)eF(γ (t)+z)/(2ε)dt

≤
(∫ 1

0
| d
dt

u(γ (t) + z)|2 1

|γ̇ |e
−F(γ (t)+z)/εdt

)1/2 (∫
|γ̇ |eF(γ (t)+z)/εdt

)1/2

.

From the above we get∫
BR

|∇u|2e−F(y)/εdy ≥
∫ 1

0

∫
Dρ

∣∣∣∣
〈

γ̇

|γ̇ | ,∇u(γ (t) + z)

〉∣∣∣∣
2

|γ̇ |dσε(z)dt

≥
∫
Dρ

(∫ 1

0
|γ̇ |eF(γ (t)+z)/εdt

)−1

dσε(z).

Now since F is Lipschitz in BR and F(Bρ; D) = 0,we know that there exists a constant
C(γ ) such that, for z ∈ Dρ and ρ < 2ε,∫ 1

0
|γ̇ |eF(γ (t)+z)/εdt ≤ C(γ ). (3.6)

In the above the constant C depends on the length of γ , which can be assumed to
be bounded. To see this, take an ε neighborhood of γ , Eε and consider disjoint balls
Bε(yi ) ⊂ Eε such that Eε ⊂ ⋃

i B5ε(yi ) given e.g. by the Vitali covering lemma. The
number of such balls is at most C1Rn/εn , for a dimensional constant C1. If we construct
a piecewise linear curve γε connecting the center of each ball in the covering, this curve
will be inside E10ε and its length will be bounded by C2Rn/εn−1, for a dimensional
constant C2. This newly constructed curve can be mollified to achieve a smooth curve
without increasing the length by more than a factor. From the above and the Lipschitz
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continuity of F it is clear that supt F(γε(t)) ≤ Cε, and as such we can replace γ with
γε in the above and get from (3.6) that there is a constant C > 1 depending only on the
data such that ∫ 1

0
|γ̇ |eF(γ (t)+z)/εdt ≤ ε1−nC.

This implies that for a new constant C we have∫
BR

|∇u|2e−F(y)/εdy ≥ Cεn−1ρn−1,

which completes the proof of the lower bound after rescaling our potential F .
To prove the upper bound we have two possible cases: In the case when F(x; D) =

F(x) we can take a cutoff function χBρ(x) ≤ φ ≤ χB2ρ(x) where |∇φ| ≤ C/ρ as a
competitor in the variational formulation of capacity (2.5). Then∫

BR

|∇φ|2e−F(y)/εdx =
∫
B2ρ(x)

|∇φ|2e−F(y)/εdx ≤ Cρn−2.

In the case where F(x; D) > F(x), consider the set D̂ = {z ∈ BR : F(z) ≤ F(x; D)}
and let D̂1 be the component that intersects D. We set D̃ = (D̂1 ∪ D)\B4ρ(x). By the
Lipschitz continuity, we know that inf D̃ F > −Cρ. We take χD̃+Bρ

≤ 1−φ ≤ χD̃+B2ρ ,
where |∇φ| ≤ C/ρ, and get∫

BR

|∇φ|2e−F(y)/εdx =
∫

(D̃+B2ρ)\D̃
|∇φ|2e−F(y)/εdx

≤ Cρ−2|(D̃ + B2ρ) \ D̃|.
Again, the upper bound follows from rescaling the potential F as in the case of the lower
bound. This completes the whole proof. ��
Lemma 3.3. Let A, B ⊂ BR be smooth disjoint sets, and let x ∈ BR be such that
Bε(x) ⊂ BR \ (A ∪ B), ε ∈ (0, 1). Then, if F(x; B) ≤ F(x; A), there exists constants
q and C such that

hA,B(x) ≤ Cεqe−(F(x;A)−F(x;B))/ε.

Proof. Let L := ‖∇F‖L∞(BR). By combining Lemmas 3.1 and 3.2 with R = ε, r =
min{ε/L , ε} yields the result. ��
Remark 3.4. By relabeling A, B to B, A and using the fact that hA,B = 1 − hB,A, we
get that if the reverse inequality holds, i.e. F(x; B) > F(x; A), then

1 − hA,B(x) ≤ Cεqe−(F(x;B)−F(x;A))/ε.

Lemma 3.5. Let
 be a smooth domain and let xa, xb ∈ 
 ⊂ BR be two local minimum
points of F. Fix 0 < δ < δ1 and assume that U−δ/3 = {x : F(x) < F(xa; xb) − δ/3} ⊂

. Then there exists an ε0 ∈ (0, 1) and a constant C = C > 1 such that, for any
0 ≤ ε ≤ ε0 for which B3ε(xa), B3ε(xb) ⊂ U−δ/3, the following holds: If Ui is a
component of U−δ/3, then

osc
Ui

hBε(xa),Bε(xb) ≤ Cε.
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Proof. Consider any component Ui of U−δ/3. We note that we can take ε small enough
depending on the Lipschitz constant of F in BR and δ such that there exists a Lipschitz
domain Di satisfying

Ui + Bε ⊂ Di ⊂ U−δ/4.

For simplicity, denote u := hBε(xa),Bε(xb). Since Di is Lipschitz wemay use the Poincaré
inequality to get ∫

Di

|u − uDi |2dx ≤ C
∫
Di

|∇u|2dx .

Using that Di ⊂ U−δ/4 together with Lemma 2.4∫
Di

|∇u|2dx ≤ esupDi F/ε

∫
Di

|∇u|2e−F(x)/εdx

≤ ε−1esupDi F/ε cap(Bε(xa), Bε(xb);
).

Using the definition of U−δ/4 and Lemma 3.2, we get∫
Di

|u − uDi |2dx ≤ Cεq1e−δ/4ε (3.7)

for some constant q1 ∈ R. Now, for any x0 ∈ Ui we have by Lemma 2.7 that

sup
Bε(x0)

|u − uDi |2 ≤ C

(
⨏B2ε |u − uDi |2dx

)

which together with (3.7) gives

sup
Bε(x0)

|u − uDi |2 ≤ Cεq1−ne−δ/4ε.

Since x0 was an arbitrary point inUi we conclude that there exists ε0 ∈ (0, 1) depending
only on the data such that if ε < ε0, the claim holds. ��

We conclude this subsection with an estimate relating the value of the potential of
the equilibrium potential to the ratio of the L1 norm of the equilibrium potential and the
capacity.

Lemma 3.6. Let 
 be a smooth domain and let A � 
 be a smooth open set and
consider wA,
 as the potential of the equilibrium potential in 
 (see Definition 2.5).
Let x ∈ 
 be a critical point of F such that B3

√
ε(x) ⊂ 
. Then there exists a constant

C > 1 such that for ρ <
√

ε we have

wA,
(x) − C

(
ρ√
ε

)α

(wA,
(x) + 1) ≤

∫
hA,
c hBρ(x),Adμε

cap(Bρ(x), A;
)

≤ wA,
(x) + C

(
ρ√
ε

)α

(wA,
(x) + 1).
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Proof. From Lemma 2.6 we get∫
∂Bρ(x)

wA,
(y)e−F(y)/εdμBρ(x),A(y) =
∫

(A∪B)c
hA,
c(z)hBρ(x),A(z)dμε.

We can estimate the left hand side as

wA,
(x) − oscBρ wA,
 ≤ inf
Bρ(x)

wA,
 ≤
∫
∂Bρ(x) e

−F(y)/εwA,
dμBρ(x),A(y)∫
∂Bρ(x) e

−F(y)/εdμBρ(x),A(y)

≤ sup
Bρ(x)

wA,
 ≤ wA,
(x) + oscBρ wA,
.

We want to estimate the oscillation of wA,
 which we do by considering

oscwA,
 = osc(wA,
 + hA,
c − hA,
c ) ≤ osc(wA,
 + hA,
c) + osc(hA,
c).

Now, the oscillation of wA,
 + hA,
c and hA,
c can estimated by Lemma 2.11 for
ρ ≤ 1

C

√
ε. That is,

oscBρ (wA,
 + hA,
c ) + oscBρ (hA,
c) ≤ C

(
ρ√
ε

)α

sup
B√

ε

(wA,
 + hA,
c)

+ C

(
ρ√
ε

)α

sup
B√

ε

(hA,
c).

We apply Lemma 2.7 to replace the supremums on the right hand side with the value at
x as both wA,
 + hA,
c and hA,
c satisfies the Harnack inequality (see Lemma 2.10).
That is,

oscBρ (wA,
 + hA,
c ) + oscBρ (hA,
c) ≤ C

(
ρ√
ε

)α

(wA,
(x) + hA,
c(x))

≤ C

(
ρ√
ε

)α

(wA,
(x) + 1).

It is easily seen that the above can be extended to ρ ≤ √
ε by applying Lemma 2.10 again

and by enlarging the constant C . The proof is completed by using (2.6) and collecting
the estimates above. ��

3.2. Laplace asymptotics for log-concave functions. The assumptions (1.4) and (1.6)
ensure that near critical points the potential F is well approximated by convex func-
tions. Therefore we will need basic estimates for log-concave functions, which rather
surprisingly we did not find in the literature.

Lemma 3.7. Assume G : R
n → R is a convex function which has a proper minimum at

the origin and G(0) = 0. Then there exists a constant C = C(n) > 1 such that

1

C
|{G < ε}| ≤

∫
Rn

e− G
ε dx ≤ C |{G < ε}|. (3.8)
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Moreover, there is a constant C = C(n) such that for all � > 1, we have∫
{G<�ε}

e− G
ε dx ≥ (1 − η(C�−1))

∫
Rn

e− G
ε dx, (3.9)

with η as in (1.15).

Proof. By approximation we may assume that G is smooth. The lower bound in (3.8)
follows immediately from∫

Rn
e− G

ε dx ≥
∫

{G<ε}
e− G

ε dx ≥ e−1|{G < ε}|.

To prove the upper bound in (3.8) we first show that, for all t > 0, it holds

|{G < 2t}| ≤ 2n|{G < t}|. (3.10)

In order to prove (3.10) it is enough to consider only the case t = 1 (the general case
follows by considering G̃ = G/t). Denote E1 = {G < 1} and E2 = {G < 2}. Hence
our goal is to show

E2 ⊂ 2E1 = {2x : x ∈ E1}.
Fix x̂ ∈ ∂E1 and define g(t) = G(t x̂) for t ≥ 0. By our assumptions, g(t) is a smooth
convex function satisfying g(0) = 0 and g(1) = 1. As such, both g, g′ are increasing
functions fromwhich we can conclude that g′(1) ≥ 1. Now, by the fundamental theorem
of calculus,

g(2) − g(1) =
∫ 2

1
g′(t) dt ≥ 1

which gives g(2) ≥ 2. This means that for all x̂ ∈ ∂E1 we have G(2x̂) ≥ 2. That is, we
have E2 ⊂ 2E1. Thus

|E2| ≤ |2E1| ≤ 2n|E1|
and (3.10) follows. Iterating (3.10) gives

|{G < 2 jε}| ≤ 2 jn|{G < ε}|
and hence

|{G < �ε}| ≤ (2�)n|{G < ε}| (3.11)

for all � ≥ 1. We conclude the proof of the upper bound in (3.8) by using (3.11) as∫
Rn

e− G
ε dx ≤

∞∑
j=0

∫
{ jε≤G<( j+1)ε}

e− G
ε dx

≤
∞∑
j=0

|{ jε ≤ G < ( j + 1)ε}|e− j

≤ 2n
∞∑
j=0

e− j ( j + 1)n|{G < ε}| ≤ C(n)|{G < ε}|.
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It remains to prove (3.9). Fix � > 1. Then, for every x ∈ {G ≥ �ε}, it holds

e− G(x)
ε = e− �G(x)

�ε =
(
e− G(x)

�ε

)� =
(
e− G(x)

�ε

)�−1
e− G(x)

�ε ≤ e−�+1e− G(x)
�ε . (3.12)

Therefore we have, by (3.8), (3.11) and (3.12),∫
{G≥�ε}

e− G
ε dx ≤ e−�+1

∫
{G≥�ε}

e− G
�ε dx ≤ e−�+1

∫
Rn

e− G
�ε dx

≤ Ce−�|{G < �ε}|
≤ Ce−��n|{G < ε}|
≤ Ce−��n

∫
Rn

e− G
ε dx

(3.13)

and the inequality (3.9) follows by using (1.15). ��
Lemma 3.8. Assume G : R

n → R is a function which has a proper global minimum at
the origin and G(0) = 0. Furthermore, assume there is a constant C0 such that, for all
a > 0 and ε > 0, it holds that∫

G>a
e−G/εdx < C0e

−a/ε. (3.14)

If there is a level ε0 > 0 such that G is convex on the component of {G(x) < ε0} that
contains 0, then there is an ε1(n, |{G < ε0/2}|) < ε0 and a constant C = C(C0, n) > 1
such that, for all ε < ε1, it holds that

C−1|{G < ε}| ≤
∫
Rn

e− G
ε dx ≤ C |{G < ε}|.

Proof. SinceG is convex in the level set {G < ε0}, we know that the level set {G ≤ ε0/2}
is convex and as such we can extend the function G outside that level set to a globally
convex function. This allows us to apply Lemma 3.7 and obtain

1

C
|{G < ε}| ≤

∫
{G<ε0/2}

e− G
ε dx ≤ C |{G < ε}|. (3.15)

Now, split the integral as∫
e−G/εdx =

∫
G≤ε0/2

e−G/εdx +
∫
G>ε0/2

e−G/εdx .

From (3.15) it follows that it suffices to bound the second integral on the right hand side.
Using (3.14) for a = ε0/2 we get∫

G>ε0/2
e−G/εdx ≤ C0e

−(ε0/2)/ε.

Since G is convex in the level set {G < ε0/2}, which is again convex, it follows that
we can construct a conical function G̃ as follows: For any x̂ ∈ ∂{G < ε0/2} define
G̃(t x̂/‖x̂‖) = tε0/2. The level sets of G̃ satisfy, for ε < ε0/2,

|{G̃ < ε}| ≤ |{G < ε}|.
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However,

|{G̃ < ε}| =
(

ε

ε0/2

)n

|{G̃ < ε0/2}| =
(

ε

ε0/2

)n

|{G < ε0/2}|.

Now, we can choose ε1(n,C0, |{G < ε0/2}|) < ε0/2 such that for ε < ε1 we have

e−(ε0/2)/ε ≤
(

ε

ε0

)n

|{G < ε0/2}|.
This means that for ε < ε1 we also have∫

G>ε0/2
e−G/εdx ≤ C0|{G < ε}|

which together with (3.15) completes the proof. ��
We conclude this section with the following technical lemma which is useful when

we study the potential near critical points.

Lemma 3.9. Assume G : R
n → R is a convex function which has a proper minimum at

the origin and G(0) = 0. Let ω : [0,∞) → [0,∞) be as in (1.4) and (1.6). Then for
all δ ≤ δ0, we have ∫

{G<δ}
e− G(x)

ε e
±ω(G(x))

ε dx �
∫
Rn

e− G(x)
ε dx .

Proof. Denote �ε = ε1
ε
with ε1 as in (1.13). From (1.14) we know that �ε → ∞ as

ε → 0. Now, by (3.9) in Lemma 3.7 and (1.14), we get∫
{G<ε1}

e− G(x)
ε e

ω(G(x))
ε dx �

∫
{G<�εε}

e− G(x)
ε dx �

∫
Rn

e− G(x)
ε dx . (3.16)

The lower bound follows immediately from this. In order to prove the upper bound, note
that ω(s) ≤ s/2 for all s ≤ δ0 by assumption. Therefore we can repeat the argument in
(3.13) to get∫

{ε1<G<δ}
e− G(x)

ε e
ω(G(x))

ε dx ≤
∫

{G>�εε}
e− G(x)

2ε dx ≤ η(C�−1
ε )

∫
Rn

e− G
ε dx,

which together with Lemma 3.16 yields the upper bound. ��

4. Proofs of Theorems 1 and 2

In this section we prove the capacity estimate in Theorem 1 and exit time estimate in
Theorem 2. Before we begin, we would like to remind the reader that, as in Sect. 3, we
will assume that F satisfies our structural assumptions and that all constants depend on
the data, see the paragraph after (1.16).

We first study the geometric quantities dε(A, B;
) and Vε(A, B;
) defined in (1.8)
and (1.9) and give a more explicit, but less geometric, characterization. The character-
ization for the geodesic distance dε(A, B;
) turns out to be much easier than for the
separating surface Vε(A, B;
) and therefore we prove it first.

In the following two propositions we will first fix two local minimum points of F ,
say xa and xb. Their communication height F(xa; xb) defines the islandU−δ/3 which we
recall are components of {F < F(xa; xb) − δ/3}. We first study the geodesic distance
between Bε(x1) and Bε(x2), where x1 and x2 are two local minima of F .
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Proposition 4.1. Let us fix local minimum points xa and xb of F. Let Ux1 and Ux2 be
the islands, i.e., the components of the set U−δ/3 = {F < F(xa; xb) − δ/3}, containing
Bε(x1) and Bε(x2) respectively, where x1 and x2 are two (possibly different) local mini-
mum points. Assume that z is a saddle point in Zxa ,xb such that the bridge Oz,δ connects
Ux1 and Ux2 , and denote 
 = Ux1 ∪Ux2 ∪ Oz,δ . Then it holds for gz given in (1.6) that

dε(Bε(x1), Bε(x2);
) � e
F(z)

ε

∫
R

e− gz (y1)

ε dy1.

Proof. Denote g = gz . We begin by proving the lower bound, i.e.,

dε(Bε(x1), Bε(x2);
) ≥ (1 − η̂(C, ε))e
F(z)

ε

∫
R

e− g(y1)

ε dy1. (4.1)

To this aimwe choose a smooth curve γ ∈ C(Bε(x1), Bε(x2);
)which, by assumptions,
intersects the bridge Oz,δ . We may choose the coordinates in R

n such that z = 0 and

Oδ = Oz,δ = {y1 : g(y1) < δ} × {y′ ∈ R
n−1 : G(y′) < δ}.

Let τ ∈ R be such that g(τ ) < δ
100 and denote Sτ = {τ } × {G < δ} ⊂ Oδ .

Let us next show that Sτ ∈ S(Bε(x1), Bε(x2);
). Since 0 ∈ Zxa ,xb then it follows
that |F(0) − F(xa; xb)| < δ/3. Now, consider a narrow cylinder of the form Ôδ =
{g(y1) < δ

100 } × {G(y′) < δ} ⊂ Oδ , then, any surface of the form S(τ ) for τ such that

g(τ ) < δ/100 lies inside Ôδ , and is parallel to the bottom/top of the cylinder. Thus, by the
assumption (1.6) and |F(0)− F(xa; xb)| < δ/3, we know that the cylindrical part of the
boundary ({g < δ/100}×{G = δ}) does not intersectUx1 ∪Ux2 . Therefore any curve inC(Bε(x1), Bε(x2);
)will pass through S(τ ). In conclusion, Sτ ∈ S(Bε(x1), Bε(x2);
)

for g(τ ) < δ
100 .

Let us fix γ ∈ C(Bε(x1), Bε(x2);
)) and denote the projection to the y1-axis by
π1 : R

n → R, i.e. π1(y) = y1. Since Sτ ∈ S(Bε(x1), Bε(x2);
), γ intersects Sτ . Thus
we conclude that τ ∈ π1

(
γ ([0, 1]) ∩ Oδ

)
. This holds for every τ ∈ {g < δ/100} and

therefore

{g < δ/100} ⊂ π1
(
γ ([0, 1]) ∩ Oδ

)
. (4.2)

Now the assumption (1.6) implies that, in the set Oδ , it holds that

F(y) − F(0) ≥ −g(y1) − ω(g(y1)) + G(y′) − ω(G(y′))

≥ −g(y1) − ω(g(y1)) +
1

2
G(y′) ≥ −g(y1) − ω(g(y1)).

(4.3)

Then for γ1 = π1(γ ) we have by (4.2), (4.3) and Lemma 3.9 that∫
{t :γ (t)∈Oδ}

|γ ′|e F(γ )
ε dt ≥ e

F(0)
ε

∫
{t :γ (t)∈Oδ}

|γ ′
1|e

−g(γ1)

ε e
−ω(g(γ1))

ε dt

≥ e
F(0)

ε

∫
{g<δ/100}

e
−g(y1)

ε e− ω(g(y1))

ε dy1

≥ (1 − η(Cε))e
F(0)

ε

∫
R

e− g(y1)

ε dy1,

proving (4.1).
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To prove the upper bound, i.e.

dε(Bε(x1), Bε(x1);
) ≤ (1 + η̂(C, ε))

∫
R

e− g(y1)

ε dy1

with η̂ as in (1.16), we denote by τ− < 0 < τ+ the numbers such that g(τ−) =
g(τ+) = δ. We first connect the points x3 = (τ−, 0) and x4 = (τ+, 0) by a segment
γ0(t) = t x4 + (1 − t)x3. Then it holds by the assumption (1.6) and by Lemma 3.9 that∫

γ0

e
F(γ0)

ε dt ≤ e
F(0)

ε

∫
{g<δ}

e
−g(y1)

ε e
ω(g(y1))

ε dy1 ≤ (1 + η(C�−1
ε ))e

F(0)
ε

∫
R

e− g(y1)

ε dy1.

We then connect the points x3, x4 to x1, x2 with smooth curves γ1, γ2 ⊂ {x ∈ 
 : F <

F(0) − δ/3}. Since it holds g(t) ≤ C |t | we have |{g < ε}| ≥ c ε. Therefore it holds by
Lemma 3.7 that∫

γi

|γ ′
i |e

F(γi )
ε dt ≤ e

F(0)
ε e

−δ
3ε

∫
γi

|γ ′
i | dt ≤ Ce

F(0)
ε e

−δ
3ε

≤ e
F(0)

ε η̂(C, ε)|{g < ε}| ≤ e
F(0)

ε η̂(C, ε)

∫
R

e− g(y1)

ε dy1.

The constant in the last expression depends on the length of γi . We can use a similar
argument as in the proof of Lemma 3.2 to bound the length of the curve. This time, we
will however consider coverings with balls of size comparable to δ. As we are in the
level set {F < F(0)− δ/3} we have some room to replace our curve with another curve
which has a length depending on δ and R, while still retaining the same upper bound as
above.

The upper bound now follows by joining the paths γ1, γ0 and γ2, thus, constructing
a competitor for the geodesic length. ��

We need to prove similar result to Proposition 4.1, but for the minimal cut. This turns
out to be trickier than the previous result for paths.

Proposition 4.2. Assume that xa, xb, z,Ux1 ,Ux2 , Oz,δ and 
 are as in Proposition 4.1.
Then it holds for Gz from (1.6) that

Vε(Bε(x1), Bε(x2);
) � e− F(z)
ε

∫
Rn−1

e− Gz (y′)
ε dy′.

Proof. Denote Gz = G for short. As in the proof of Proposition 4.1 we may assume
that z = 0 and that

Oδ = Oz,δ = {y1 : g(y1) < δ} × {y′ ∈ R
n−1 : G(y′) < δ}.

Let us begin by proving the upper bound. In the proof of Proposition 4.1 we already
observed that the surface S0 = {0} × {G < δ} is in the family of separating surfaces
S0 ∈ S(Bε(x1), Bε(x2);
). Therefore the assumption (1.6) and Lemma 3.9 together
with the definition of Vε imply

Vε(Bε(x1), Bε(x2);
) ≤
∫
S0
e− F

ε dHn−1 ≤ e− F(0)
ε

∫
{G<δ}

e− G
ε e

ω(G)
ε dy′

� e− F(0)
ε

∫
Rn−1

e− G(y′)
ε dy′.
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The upper bound follows directly from this. Moreover by Lemma 3.7 it holds that

Vε(Bε(x1), Bε(x2);
) ≤ Ce− F(0)
ε |{G < ε}| ≤ Ce− F(0)

ε . (4.4)

In order to prove the lower bound we fix a small t > 0 and choose a smooth hyper-
surface S ∈ S(Bε(x1), Bε(x2);
) such that∫

S
e− F

ε dHn−1 ≤ Vε(Bε(x1), Bε(x2);
) + t.

Then S divides the domain 
 into two different components, from which we denote the
component containing x1 by Ûx1 . Note that then ∂Ûx1 ∩
 ⊂ S. Denote ρ = ε2. We use
an idea from [16] and instead of studying the set Ûx1 , we study the density

vρ(x) := |Bρ(x) ∩ Ûx1 |
|Bρ |

which can be written as a convolution, vρ(x) = 1
|Bρ | (χÛx1

∗ χBρ ). To see why studying

vρ is relevant, we need some setup that we will present next.
We choose a subset Ô of the bridge Oδ as

Ô := {x1 : g(y1) < δ} × {y′ ∈ R
n−1 : G(y′) < δ/100},

see Fig. 3, and denote its bottom/top boundaries by �− and �+, i.e.,

{g = δ} × {G < δ/100} = �− ∪ �+.

Now since 0 ∈ Zxa ,xb , we have |F(0) − F(xa; xb)| < δ/3. Using this and (1.6) we
deduce that �− ∪ �+ ⊂ {F < F(xa; xb) − δ/3} and �− ∪ �+ ⊂ {F < F(0) − δ/3},
i.e.,

�− ∪ �+ ⊂ Ux1 ∪Ux2 ∩ {F < F(0) − δ/3}. (4.5)

Moreover, by relabeling we may assume that �+ ⊂ Ux1 and �− ⊂ Ux2 . Furthermore,
by the Lipschitz-continuity of F we have |F(x) − F(y)| ≤ cε2 for all y ∈ Bρ(x). Note
also that for all x ∈ Ô and y ∈ Bρ(x) it holds x − y ∈ 
.

We will now relate vρ to the surface integral of S as follows: Recall that the set
Ûx1 has smooth boundary in 
 and thus its characteristic function is a BV-function. In
particular, the derivative |∇χÛx1

| is a Radon measure in 
 and

∫



|∇χÛx1
|e− F

ε dx =
∫

∂Ûx1∩


e− F
ε dHn−1 ≤

∫
S
e− F

ε dHn−1. (4.6)

Using the definition of vρ and the Lipschitzness of F inside Bρ(x), wemay thus estimate∫
Ô

|∇vρ |e− F(x)
ε dx ≤ 1

|Bρ |
∫
Ô
e− F(x)

ε

∫
Rn

|∇χÛx1
(y)||χBρ (x − y)| dydx

≤ 1

|Bρ |
∫
Ô
ecε

∫
Rn

e− F(y)
ε |∇χÛx1

(y)||χBρ (x − y)| dydx

≤ (1 + Cε)

∫



|∇χÛx1
(y)|e− F(y)

ε dy.

(4.7)
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Putting together (4.6) and (4.7) we see that it is enough to establish a lower bound
on the integral of |∇vρ | in Ô . In order to achieve this, we first claim that for all x such
that Bρ(x) ⊂ 
 ∩ {F < F(0) − δ/3} we have, when ε is small,

vρ(x) ≥ 1 − Cε for x ∈ Ux1 ∩ {F < F(0) − δ/3} and

vρ(x) ≤ Cε for x ∈ Ux2 ∩ {F < F(0) − δ/3}. (4.8)

We now complete the proof of the lower bound, using (4.8), and postpone the proof of
(4.8) to the end. Assume now that (4.8) holds. Then we can use the fundamental theorem
of calculus and (4.5) to get that for all y′ ∈ {G < δ/100}

1 − 2Cε ≤
∫

{g<δ}
∂y1vρ(y1, y

′) dy1. (4.9)

Now, arguing as in (4.3) we conclude that

F(y) − F(0) ≤ G(y′) + ω(G(y′)) for y ∈ Oδ. (4.10)

Multiplying and dividing with e− F(y)
ε inside the integral in (4.9) and using (4.10) we get

(1 − 2Cε)e−F(0)e
−G(y′)−ω(G(y′))

ε ≤
∫

{G<δ/100}

∫
{g<δ}

|∂y1vρ(y1, y
′)|e−F(y)/ε dy1.

Integrating over y′ ∈ {G < δ/100} we obtain

(1 − 2Cε)e−F(0)
∫

{G<δ/100}
e− G(y′)

ε e− ω(G(y′))
ε dy′

≤
∫

{G<δ/100}

∫
{g<δ}

|∂y1vρ(y1, y
′)|e− F(y)

ε dy1dy
′

≤
∫
Ô

|∇vρ |e− F(y)
ε dx .

The lower bound on the integral on the right hand side follows by Lemma 3.9, i.e. we
have

(1 − η(ε))e−F(0)
∫
Rn−1

e− G(y′)
ε dy′ ≤

∫
Ô

|∇vρ |e− F(y)
ε dy. (4.11)

Now, assuming (4.8), we may use (4.6), (4.7) and (4.11) to get the lower bound from

(1 − η(ε))e−F(0)
∫
Rn−1

e− G(y′)
ε dy′ ≤ (1 + Cε)

∫
S
e− F

ε dHn−1

≤ (1 + Cε)
(
Vε(Bε(x1), Bε(x2);
) + t

)
as t is arbitrarily small. Thus we obtain the lower bound, and hence in order to complete
the proof it remains to prove (4.8).

To this aim, we fix x ∈ Ux1 ∪ Ux2 ∩ {F < F(0) − δ/3} such that Bρ(x) ⊂ 
. By
the relative isoperimetric inequality (See for instance [2, Theorem 3.40] or [18]) and by
ρ = ε2 it holds

Hn−1(∂Ûx1 ∩ Bρ(x)
) ≥ cmin

{|Bρ(x) ∩ Ûx1 |
n−1
n , |Bρ(x) \ Ûx1 |

n−1
n
}

≥ c ε2(n−1) min
{
vρ(x), 1 − vρ(x)

} n−1
n .
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Fig. 3. The bridge Oδ connects the setsUx1 andUx2 . The smaller cyldindrical bridge Ô has its top and bottom
inside Ux1 ∪Ux2

On the other hand, since x ∈ {F < F(0) − δ/3} and thus Bρ(x) ⊂ {F < F(0) − δ/4},
we have by (4.4) that

Hn−1(∂Ûx1 ∩ Bρ(x)
) ≤ e

F(0)
ε e− δ

4ε

∫
∂Ûx1∩Bρ(x)

e− F
ε dHn−1

≤ e
F(0)

ε e− δ
4ε

∫
S
e− F

ε dHn−1

≤ e
F(0)

ε e− δ
4ε
(
Vε(Bε(x1), Bε(x2);
) + t

)
≤ Ce− δ

4ε .

By combining the two inequalities above we obtain (4.8) which completes the whole
proof. ��

Proof of Theorem 1. We consider parallel case and series case separately.

Parallel case Assume that the saddle points in Fxa ,xb = {z1, . . . , zN } are parallel, see
Fig. 2. Let us fix a saddle point zi ∈ Fxa ,xb and recall the definition of the bridge Ozi ,δ
in (1.7). By considering F − F(zi ) instead of F , we may assume

zi = 0, F(0) = 0

and

Oδ := O0,δ = {x1 ∈ R : g(x1) < δ} × {x ′ ∈ R
n−1 : G(x ′) < δ}.

We also recall the notation U−δ/3 = {F < F(xa; xb) − δ/3}. We denote the island,
i.e., the component of U−δ/3, which contains the point xa by Uxa and the island which
contains the point xb byUxb . Since the saddle points are parallel, the bridge Oδ connects
the islands Uxa and Uxb which means that the set 
 = Uxa ∪ Uxb ∪ Oδ is open and
connected. By Lemma 3.5 we have oscUxa

(hA,B)+oscUxb
(hA,B) ≤ Cε. Since hA,B = 1

in Bε(xa) ⊂ Uxa and hA,B = 0 in Bε(xb) ⊂ Uxb , it follows that

hA,B ≥ 1 − Cε in Uxa and hA,B ≤ Cε in Uxb . (4.12)
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Let us choose a subset Ô of the bridge Oδ as in the proof of Proposition 4.2 (see
Fig. 3), i.e.

Ô := {x1 : g(x1) < δ} × {x ′ ∈ R
n−1 : G(x ′) < δ/100},

and denote its bottom/top boundaries by �− ⊂ {x1 < 0} and �+ ⊂ {x1 > 0}, i.e.,
{g = δ} × {G < δ/100} = �− ∪ �+.

Then by using (1.6) and arguing as in the proof of Proposition 4.2 we deduce that
�−, �+ ⊂ {F < F(xa; xb) − δ/3} and we may assume �+ ⊂ Uxa and �− ⊂ Uxb .
Therefore, by (4.12), we have that hA,B ≤ Cε on �− and hA,B ≥ 1 − Cε on �+. Now,
by the fundamental theorem of calculus and Cauchy-Schwarz inequality, it holds that

1 − 2Cε ≤
∫

{g<δ}
∂x1hA,B(x) dx1 =

∫
{g<δ}

∂x1hA,B(x)e− F(x)
2ε e

F(x)
2ε dx1

≤
(∫

{g<δ}
|∇hA,B(x)|2e− F(x)

ε dx1

) 1
2
(∫

{g<δ}
e

F(x)
ε dx1

) 1
2

. (4.13)

Let us next estimate the last term above. By assumption (1.6) we have, for x ∈ Ô ,

F(x) ≤ −g(x1) + ω(g(x1)) + G(x ′) + ω(G(x ′)).

Therefore, by Lemma 3.9 and Proposition 4.1, we can estimate∫
{g<δ}

e
F(x)

ε dx1 ≤ (1 + η̂(C, ε))e
G(x ′)

ε e
ω(G(x ′))

ε

∫
{g<δ}

e− g(x1)

ε e
ω(g(x1))

ε dx1

≤ (1 + η̂(C, ε))e
G(x ′)

ε e
ω(G(x ′))

ε

∫
R

e− g(x1)

ε dx1

≤ (1 + η̂(C, ε))e
G(x ′)

ε e
ω(G(x ′))

ε dε(Bε(xa), Bε(xb);
).

(4.14)

We combine the inequalities (4.13) and (4.14) leading to (for another constant C)∫
{g<δ}

|∇hA,B(x)|2e− F(x)
ε dx1 ≥ (1 − η̂(C, ε))

dε(Bε(xa), Bε(xb);
)
e− G(x ′)

ε e− ω(G(x ′))
ε

for all x ′ ∈ {G < δ/100}. By integrating over x ′ ∈ {G < δ/100} we have by Fubini’s
theorem, Lemma 3.9 and Proposition 4.2, that∫

Ô
|∇hA,B |2e− F(x)

ε dx ≥ (1 − η̂(C, ε))

dε(Bε(xa), Bε(xb);
)

∫
{G<δ/100}

e− G(x ′)
ε e− ω(G(x ′))

ε dx ′

≥ (1 − η̂(C, ε))

dε(Bε(xa), Bε(xb);
)

∫
Rn−1

e− G(x ′)
ε dx ′

≥ (1 − η̂(C, ε))
Vε(Bε(xa), Bε(xb);
)

dε(Bε(xa), Bε(xb);
)
.

(4.15)

Therefore, by repeating the argument for every saddle zi ∈ Zxa ,xb and using the fact that
the bridges Ozi ,δ are disjoint, we obtain after scaling back the potential

∫
Rn

|∇hA,B |2e− F(x)
ε dx ≥ (1 − η̂(C, ε))

N∑
i=1

Vε(Bε(xa), Bε(xb);
)

dε(Bε(xa), Bε(xb);
)
e

F(zi )
ε .
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This yields the lower bound when the saddle points are parallel.
For the upper bound, we only give a sketch of the argument as it is fairly straight-

forward. The idea is to contruct a competitor h in the variational characterization of the
capacity, see (2.5). Let us first define h in the set Uδ/3 = {F < F(xa; xb) + δ/3}. Since
the saddle points Zxa ,xb = {z1, . . . , zN } are parallel, it follows that the points xa and xb
lie in different components of the set

Ũ = Uδ/3 \
N⋃
i=1

Ozi ,δ,

where Ozi ,δ is defined in (1.8). Denote the components of Ũ containing xa and xb by
Ũxa and Ũxb , respectively. We define first

h = 1 in Ũxa and h = 0 in Ũxb .

Let us next fix a saddle point zi ∈ Zxa ,xb . As before, we may again assume that

zi = 0, F(0) = 0

and

Oδ := O0,δ = {x1 ∈ R : g(x1) < δ} × {x ′ ∈ R
n−1 : G(x ′) < δ}.

Moreover, we may assume that

Ũxa ∩ ∂Oδ ⊂ {x1 > 0} and Ũxb ∩ ∂Oδ ⊂ {x1 < 0}.
Let τ− < 0 < τ+ be numbers such that g(τ−) = g(τ+) = δ/100.Wedefineh(x) = ϕ(x1)
in Oδ such that the function ϕ : [τ−, τ+] → R is a solution of the ordinary differential
equation

d

ds

(
ϕ′(s)e

g(s)
ε

)
= 0 in (τ−, τ+)

with boundary values ϕ(τ−) = 0 and ϕ(τ+) = 1. Note that then

ϕ′(s)e
g(s)
ε =

(∫ τ+

τ−
e− g(x1)

ε dx1

)−1

.

We extend ϕ into R by setting ϕ(s) = 0 for s ≤ τ− and ϕ(s) = 1 for s ≥ τ+. It follows
that for the function h we have, by construction, Lemma 3.9, and an argument similar
to the one leading to (4.13), that∫

Oδ

|∇h|2e− F(x)
ε dx

≤
∫

{g<δ}
|ϕ′(x1)|2e

g(x1)

ε e
ω(g(x1))

ε dx1

∫
{G<δ}

e− G(x ′)
ε e

ω(G(x ′))
ε dx ′

≤ (1 + η̂(C, ε))

(∫
R

e− g(x1)

ε dx1

)−1 (∫
Rn−1

e− G(x ′)
ε dx ′

)
.

By repeating the construction for every saddle point zi ∈ Zxa ,xb , we obtain a function
which is defined inUδ/3. We denote this function by h : Uδ/3 → R. Note that now for h
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the estimate (4.15) is optimal. Moreover, h is Lipschitz continuous. We extend h to R
n

without increasing the Lipschitz constant L , e.g., by defining

h(x) = sup
y∈Uδ/3

(
h(y) − L|x − y|) for x ∈ R

n \Uδ/3.

This finally leads to the upper bound completing the proof of the parallel case, while we
leave the final details on the upper bound for the reader.

Series case Assume that the saddle points Zxa ,xb = {z1, . . . , zN } are in series, see Fig. 2.
We use the ordering as in (1.11) and denote the points xi as in (1.12). We also fix the
islands, Uxi−1 and Uxi (components of {F < F(xa; xb) − δ/3}), which are connected
by the bridge Ozi ,δ . Again we may assume that zi = 0, F(0) = 0 and that

Oδ = Ozi ,δ = {y1 : g(y1) < δ} × {y′ : G(y′) < δ}.
By Lemma 3.5 we have oscUxi−1

(hA,B) + oscUxi
(hA,B) ≤ Cε. Therefore there are

numbers ci−1, ci such that

|hA,B − ci−1| ≤ Cε in Uxi−1 and |hA,B − ci | ≤ Cε in Uxi .

Then, using the fundamental theorem of calculus as in (4.13), we obtain

|ci−1 − ci | − 2Cε ≤
(∫

{g<δ}
|∇hA,B(y)|2e− F(y)

ε dy1

) 1
2
(∫

{g<δ}
e

F(y)
ε dy1

) 1
2

for

(y1, y
′) ∈ {g < δ} × {G < δ/100}.

Moreover, arguing as in (4.14), we have∫
{g<δ}

e
F(y)

ε dy1 ≤ (1 + η̂(C, ε))e
G(y′)

ε e
ω(G(y′))

ε dε(xi−1, xi ).

These together imply∫
{g<δ}

|∇hA,B(y)|2e− F(y)
ε dy1 ≥ (1 − η̂(C, ε))(ci−1 − ci )2

dε(xi−1, xi )
e− G(y′)

ε e− ω(G(y′))
ε .

By integrating over y′ ∈ {G < δ/100} we have, by Fubini’s theorem, Lemma 3.9, and
Proposition 4.2, that∫

Oδ

|∇hA,B |2e− F(y)
ε dy ≥ (1 − η̂(C, ε))(ci−1 − ci )

2 Vε(xi−1, xi )

dε(xi−1, xi )
.

By repeating the argument for every saddle zi ∈ Zxa ,xb and using the fact that the sets
Ozi ,δ are disjoint we obtain

∫
Rn

|∇hA,B |2e− F(y)
ε dy ≥ (1 − η̂(C, ε))

N∑
i=1

(ci−1 − ci )
2 Vε(xi−1, xi )

dε(xi−1, xi )
.
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Recall that the numbers ci are the approximate values of hA,B in the components Uxi .
Therefore wemay choose them such that 1 = c0 and cN = 0. By denoting yi = ci−1−ci
and ai = Vε(xi−1,xi )

dε(xi−1,xi )
we may write

N∑
i=1

(ci−1 − ci )
2 Vε(xi−1, xi )

dε(xi−1, xi )
=

N∑
i=1

ai y
2
i ,

where we have a constraint
∑N

i=1 yi = 1. By a standard optimization argument (using
Lagrange multipliers) we get that under such a constraint it holds that

N∑
i=1

ai y
2
i ≥

(
N∑
i=1

1

ai

)−1

.

This yields the lower bound in the case when the saddle points are in series. The upper
bound on the other hand follows from a similar argument than in the parallel case, and
we leave the details for the reader. This completes the proof in the series case, and hence
the whole proof. ��

Proof of Theorem 2. Let us first recall the notation related to Theorem 2. We assume
that the local minima xi of F are ordered such that F(xi ) ≤ F(x j ) if i ≤ j , and they are
grouped into sets Gi such that xi , x j ∈ Gk if F(xi ) = F(x j ) and x ∈ Gi , y ∈ G j with
i < j if F(x) < F(y). We also denoted F(Gi ) := F(x) with x ∈ Gi , Sk = ⋃k

i=1 Gi ,
Gε

k = ⋃
x∈Gk

Bε(x), and Sε
k = ⋃k

i=1 G
ε
i .

The proof of Theorem 2 follows from the following lemma together with Lemma 3.6
and Theorem 1.

Lemma 4.3. Under the assumptions of Theorem 2, there exists constantsC = C(F) > 1
and ε = ε0(F) ∈ (0, 1) such that, for all 0 < ε ≤ ε0, we have

1

C

∑
x∈Gk+1

|Ox,ε| ≤ e
F(Gk+1)

ε

∫
hGε

k+1,S
ε
k
dμε ≤ C

∑
x∈Gk+1

|Ox,ε|.

We prove Theorem 2 first, while the proof of Lemma 4.3 is given later on.

Proof of Theorem 2. Using Lemma 3.6 and choosing ρ = ε we obtain that, for ε small
enough and x ∈ Gε

k+1, that

E
x [τSε

k
IτSε

k
<τ
c ] ≤ C

∫
hSε

k ,

c hGε

k+1,S
ε
k
dμε

cap(Gε
k+1, S

ε
k )

+ Cεα/2.

The ratio above can be estimated by using Lemma 4.3 and the monotonicity of the
capacity. That is, the numerator can be bounded by Lemma 4.3, while for the capacity
we have

cap(Gε
k+1, S

ε
k ) ≥ cap(Gε

k+1,G
ε
k) ≥ max

x∈Gk ,y∈Gk+1
cap(Bε(x), Bε(y)). (4.16)

The claim for the parallel and series cases now follows by assuming that the maximum
is attained for a pair of minima xa ∈ Gk , xb ∈ Gk+1 and applying Theorem 1. ��
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Fig. 4. Geometric view of multiple minima at same height and multiple saddles at the same height

Remark 4.4. We note that in the general case, the last inequality in (4.16) has the optimal
dependence with respect to ε but the inequalities may differ by a constant. Essentially
the inequality is sharp only in the case where only one saddle contributes to the total
value of the capacity. Hence we have the sharp estimate when saddle points are parallel
or in series, but in general the situation might be more complicated than that. We have
illustrated this in Fig. 4, where each gray dot is a saddle at the same height, and A, B
produces Gk . Then the precise value of cap(Gε

k+1, A ∪ B) is already non-trivial to
calculate.

Proof of Lemma 4.3. First we will prove a localization estimate for exponential inte-
grals. Consider a set 0 ∈ O and a function f such that f (0) = l is a proper local
minimum and that f is locally convex around 0. Then there exists an ε0 such that, for
any ε < ε0, ∫

O
e− f (x)/εdx ≤ Ce−l/ε|{ f < ε} ∩ O|. (4.17)

We will first prove (4.17) and then repeatedly apply it to prove Lemma 4.3.
In order to prove (4.17), we begin by rescaling such that l = 0. Then we extend f

outside O as +∞ and call this extended function f̂ . We first prove∫
{ f̂ >a}

e− f̂ (x)/εdx ≤ ce−a/ε

which, by the definition of f̂ , is equivalent to∫
{ f >a}∩O

e− f (x)/εdx ≤ ce−a/ε.

This now follows from Lemma 3.8 by using |O| < ∞ and observing that f̂ satisfies the
assumptions of Lemma 3.8. Hence we observe (4.17).

Consider now the set

U−δ2/3 ≡ {y : F(y) ≤ F(Gk+1; Sk) − δ2/3}
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and let Ui be the component of U−δ2/3 containing xi . We split∫
hGε

k+1,S
ε
k
e−F/εdx =

∫
Uc−δ2/3

hGε
k+1,S

ε
k
e−F/εdx +

∫
U−δ2/3\Sε

k

hGε
k+1,S

ε
k
e−F/εdx,

where complement is understood with respect to the domain 
. By assumptions (1.4)
and (1.6) on F it holds that

F(Gk+1; Sk) ≥ F(Gk+1) + 2
3δ2. (4.18)

Also by the quadratic growth (1.3) we can bound the first integral as∫
Uc−δ2/3

hGε
k+1,S

ε
k
e−F/εdx ≤ Ce−(F(Gk+1;Sk )−δ2/3)/ε ≤ Ce− δ2

3ε e−F(Gk+1)/ε,

which shows that the first integral is neglible in the final estimate. For the second integral
we further split∫

U−δ2/3\Sε
k

hGε
k+1,S

ε
k
e−F/εdx =

∑
i

∫
Ui\Sε

k

hGε
k+1,S

ε
k
e−F/εdx .

We will now consider all the different components Ui depending on what minima
they contain. We start with the components Ui that do not intersect Sε

k ∪ Gε
k+1. Then all

local minima in Ui are larger than F(Gk+1), and hence from (4.17) we get that there
exists a constant C such that∫

Ui

hGε
k+1,S

ε
k
e−F/εdx ≤ Ce−F(Gk+2)/ε ≤ Ce−δ2/εe−F(Gk+1)/ε,

where the last inequality follows from (1.19). This shows that also this term is neglible.
Consider next the componentUi that intersectsGε

k+1 but do not intersect S
ε
k . In this case,

by (4.17) and Lemmas 3.5 and 3.7, we have

1

C

∑
x∈Gk+1∩Ui

|Ox,ε| ≤ e
F(Gk+1)

ε

∫
Ui

hGε
k+1,S

ε
k
e−F/εdx ≤ C

∑
x∈Gk+1∩Ui

|Ox,ε| (4.19)

providing us the leading term that contributes to the final estimate.
Consider next a component Ui such that Ui ∩ Sε

k �= ∅. Since Ui is a component of
U−δ2/3, it follows fromUi ∩ Sk �= ∅ that F(y; Sk) ≤ F(y;Gk+1)− δ2/3 ≤ F(y;Gk+1)

in Ui . Therefore we have, by Lemma 3.3, in Ui that

hGε
k+1,S

ε
k

≤ Cεqe−(F(y;Gk+1)−F(y;Sk ))/ε.

Hence, for q ∈ R, we obtain∫
Ui

hGε
k+1,S

ε
k
e−F/εdx ≤ εq

∫
Ui

e−(F(y;Gk+1)−F(y;Sk))/εe−F(y)/εdy.

In order to compute the integral on the right hand side we study the infimum value of the
function f (y) = F(y;Gk+1) − F(y; Sk) + F(y). Clearly, the infimum is attained at an
interior point ofUi , denoted by xi . It follows that then xi is necessarily a local minimum
point of F . By above considerations,we also have F(y; Sk) < F(y;Gk+1) for all y ∈ Ui ,
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and thus we may deduce that xi /∈ Gk+1. If now xi ∈ Sk , then F(xi ) = F(xi ; Sk) and
thus, by the definition of f and by (4.18),

inf
Ui

f (y) = f (xi ) ≥ F(xi ;Gk+1) ≥ F(Sk;Gk+1) ≥ F(Gk+1) + 2
3δ2.

It remains to study the case where xi ∈ G j for some j ≥ k + 2. In this case we apply

inf
Ui

f (y) = f (xi ) =
≥0︷ ︸︸ ︷

F(xi ;Gk+1) − F(xi ; Sk)+F(G j ) ≥ F(Gk+2) ≥ F(Gk+1) + δ2,

where the last inequality follows from (1.19). Therefore we can conclude that, for δ3 =
2
3δ2, it holds that∫

Ui

εqe−(F(y;Gk+1)−F(y;Sk))/εe−F(y)/εdy ≤ Cεqe− δ3
ε e−F(Gk+1)/ε.

Consequently, the componentUi satisfyingUi ∩ Sε
k �= ∅ does not contribute either. The

proof is hence completed by (4.19) and by the fact that the integral over the remaining
components are neglible whenever ε is small enough. ��
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