Determining an unbounded potential from Cauchy data in admissible geometries
Ferreira, D. D. S., Kenig, C. E., & Salo, M. (2013). Determining an unbounded potential from Cauchy data in admissible geometries. Communications in Partial Differential Equations, 38(1), 50-68. https://doi.org/10.1080/03605302.2012.736911
Julkaistu sarjassa
Communications in Partial Differential EquationsPäivämäärä
2013Oppiaine
MatematiikkaInversio-ongelmien huippuyksikköMathematicsCentre of Excellence in Inverse ProblemsTekijänoikeudet
© Taylor & Francis Group, LLC, 2013. This is a final draft version of an article whose final and definitive form has been published by Taylor & Francis Group, LLC. Published in this repository with the kind permission of the publisher.
In [4 Dos Santos Ferreira , D. , Kenig , C.E. , Salo , M. , Uhlmann , G. ( 2009 ). Limiting Carleman weights and anisotropic inverse problems . Invent. Math. 178 : 119 – 171 .
[Crossref], [Web of Science ®], [Google Scholar]
] anisotropic inverse problems were considered in certain admissible geometries, that is, on compact Riemannian manifolds with boundary which are conformally embedded in a product of the Euclidean line and a simple manifold. In particular, it was proved that a bounded smooth potential in a Schrödinger equation was uniquely determined by the Dirichlet-to-Neumann map in dimensions n ≥ 3. In this article we extend this result to the case of unbounded potentials, namely those in L n/2. In the process, we derive L p Carleman estimates with limiting Carleman weights similar to the Euclidean estimates of Jerison and Kenig [8 Jerison , D. , Kenig , C.E. ( 1985 ). Unique continuation and absence of positive eigenvalues for Schrödinger operators . Ann. Math. 121 : 463 – 494 .
[Crossref], [Web of Science ®], [Google Scholar]
] and Kenig et al. [9 Kenig , C.E. , Ruiz , A. , Sogge , C.D. ( 1987 ). Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators . Duke Math. J. 55 : 329 – 347 .
[Crossref], [Web of Science ®], [Google Scholar]
].
...
Julkaisija
Taylor & FrancisISSN Hae Julkaisufoorumista
0360-5302Asiasanat
Alkuperäislähde
http://dx.doi.org/10.1080/03605302.2012.736911Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/23107942
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
The Geodesic Ray Transform on Spherically Symmetric Reversible Finsler Manifolds
Ilmavirta, Joonas; Mönkkönen, Keijo (Springer Science and Business Media LLC, 2023)We show that the geodesic ray transform is injective on scalar functions on spherically symmetric reversible Finsler manifolds where the Finsler norm satisfies a Herglotz condition. We use angular Fourier series to reduce ... -
On mixed and transverse ray transforms on orientable surfaces
Ilmavirta, Joonas; Mönkkönen, Keijo; Railo, Jesse (Walter de Gruyter GmbH, 2023)The geodesic ray transform, the mixed ray transform and the transverse ray transform of a tensor field on a surface can all be seen as what we call mixing ray transforms, compositions of the geodesic ray transform and an ... -
Determining an unbounded potential for an elliptic equation with a power type nonlinearity
Nurminen, Janne (Elsevier, 2023)In this article we focus on inverse problems for a semilinear elliptic equation. We show that a potential q in ��/2+�, �>0, can be determined from the full and partial Dirichlet-to-Neumann map. This extends the results ... -
The Linearized Calderón Problem on Complex Manifolds
Guillarmou, Colin; Salo, Mikko; Tzou, Leo (Springer, 2019)In this note we show that on any compact subdomain of a K¨ahler manifold that admits sufficiently many global holomorphic functions, the products of harmonic functions form a complete set. This gives a positive answer to ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.