Determining an unbounded potential from Cauchy data in admissible geometries
Ferreira, D. D. S., Kenig, C. E., & Salo, M. (2013). Determining an unbounded potential from Cauchy data in admissible geometries. Communications in Partial Differential Equations, 38(1), 50-68. https://doi.org/10.1080/03605302.2012.736911
Published in
Communications in Partial Differential EquationsDate
2013Discipline
MatematiikkaInversio-ongelmien huippuyksikköMathematicsCentre of Excellence in Inverse ProblemsCopyright
© Taylor & Francis Group, LLC, 2013. This is a final draft version of an article whose final and definitive form has been published by Taylor & Francis Group, LLC. Published in this repository with the kind permission of the publisher.
In [4 Dos Santos Ferreira , D. , Kenig , C.E. , Salo , M. , Uhlmann , G. ( 2009 ). Limiting Carleman weights and anisotropic inverse problems . Invent. Math. 178 : 119 – 171 .
[Crossref], [Web of Science ®], [Google Scholar]
] anisotropic inverse problems were considered in certain admissible geometries, that is, on compact Riemannian manifolds with boundary which are conformally embedded in a product of the Euclidean line and a simple manifold. In particular, it was proved that a bounded smooth potential in a Schrödinger equation was uniquely determined by the Dirichlet-to-Neumann map in dimensions n ≥ 3. In this article we extend this result to the case of unbounded potentials, namely those in L n/2. In the process, we derive L p Carleman estimates with limiting Carleman weights similar to the Euclidean estimates of Jerison and Kenig [8 Jerison , D. , Kenig , C.E. ( 1985 ). Unique continuation and absence of positive eigenvalues for Schrödinger operators . Ann. Math. 121 : 463 – 494 .
[Crossref], [Web of Science ®], [Google Scholar]
] and Kenig et al. [9 Kenig , C.E. , Ruiz , A. , Sogge , C.D. ( 1987 ). Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators . Duke Math. J. 55 : 329 – 347 .
[Crossref], [Web of Science ®], [Google Scholar]
].
...


Publisher
Taylor & FrancisISSN Search the Publication Forum
0360-5302Keywords
Original source
http://dx.doi.org/10.1080/03605302.2012.736911Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/23107942
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Stability of the Calderón problem in admissible geometries
Caro, Pedro; Salo, Mikko (American Institute of Mathematical Sciences, 2014)In this paper we prove log log type stability estimates for inverse boundary value problems on admissible Riemannian manifolds of dimension n ≥ 3. The stability estimates correspond to the uniqueness results in [13]. These ... -
The Calderón problem in transversally anisotropic geometries
Ferreira, David Dos Santos; Kurylev, Yaroslav; Lassas, Matti; Salo, Mikko (European Mathematical Society Publishing House; European Mathematical Society, 2016)We consider the anisotropic Calder´on problem of recovering a conductivity matrix or a Riemannian metric from electrical boundary measurements in three and higher dimensions. In the earlier work [13], it was shown that ... -
Determining an unbounded potential for an elliptic equation with a power type nonlinearity
Nurminen, Janne (Elsevier, 2023)In this article we focus on inverse problems for a semilinear elliptic equation. We show that a potential q in ��/2+�, �>0, can be determined from the full and partial Dirichlet-to-Neumann map. This extends the results ... -
The Linearized Calderón Problem on Complex Manifolds
Guillarmou, Colin; Salo, Mikko; Tzou, Leo (Springer, 2019)In this note we show that on any compact subdomain of a K¨ahler manifold that admits sufficiently many global holomorphic functions, the products of harmonic functions form a complete set. This gives a positive answer to ...