Component-based thinking in designing interactive multiobjective evolutionary methods
Lárraga, G., & Miettinen, K. (2023). Component-based thinking in designing interactive multiobjective evolutionary methods. In GECCO '23 Companion : Proceedings of the Companion Conference on Genetic and Evolutionary Computation (pp. 1693-1702). ACM. https://doi.org/10.1145/3583133.3596307
Päivämäärä
2023Oppiaine
Laskennallinen tiedeMultiobjective Optimization GroupHyvinvoinnin tutkimuksen yhteisöPäätöksen teko monitavoitteisestiComputational ScienceMultiobjective Optimization GroupSchool of WellbeingDecision analytics utilizing causal models and multiobjective optimizationTekijänoikeudet
© 2023 Copyright held by the owner/author(s).
Multiobjective optimization problems have multiple conflicting objective functions to be optimized simultaneously. They have many Pareto optimal solutions representing different trade-offs, and a decision-maker needs to find the most preferred one. Although most multiobjective evolutionary algorithms approximate the Pareto optimal set, their variants incorporate preference information to focus on a subset of solutions that interest the decision-maker. Interactive methods allow decision-makers to provide preference information iteratively during the solution process, enabling them to learn about available solutions and their preferences' feasibility. Nevertheless, most interactive evolutionary methods do not sufficiently support the decision-maker in finding the most preferred solution and may be cognitively too demanding.
We propose a framework for designing and implementing interactive evolutionary methods. It contains algorithmic components based on similarities in the structure of existing preference-based evolutionary algorithms and decision-makers' needs during interaction. The components can be combined in different ways to create new interactive methods or to instantiate the existing ones. We show an example of the implementation of the proposed framework composed of three elements: a graphical user interface, a database, and a set of algorithmic components. The resulting software can be utilized to develop new methods and increase their usability in real-world applications.
...
Julkaisija
ACMEmojulkaisun ISBN
979-8-4007-0120-7Konferenssi
Genetic and Evolutionary Computation ConferenceKuuluu julkaisuun
GECCO '23 Companion : Proceedings of the Companion Conference on Genetic and Evolutionary ComputationAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184210361
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This research was supported by the Academy of Finland (grant number 322221). The research is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization, jyu.fi/demo) of the University of JyväskyläLisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
Potential of interactive multiobjective optimization in supporting the design of a groundwater biodenitrification process
Saccani, Giulia; Hakanen, Jussi; Sindhya, Karthi; Ojalehto, Vesa; Hartikainen, Markus; Antonelli, Manuela; Miettinen, Kaisa (Elsevier, 2020)The design of water treatment plants requires simultaneous analysis of technical, economic and environmental aspects, identified by multiple conflicting objectives. We demonstrated the advantages of an interactive ... -
A Visualization Technique for Accessing Solution Pool in Interactive Methods of Multiobjective Optimization
Filatovas, Ernestas; Podkopaev, Dmitry; Kurasova, Olga (Universitatea Agora, 2015)Interactive methods of multiobjective optimization repetitively derive Pareto optimal solutions based on decision maker's preference information and present the obtained solutions for his/her consideration. Some interactive ... -
Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
Afsar, Bekir; Ruiz, Ana B.; Miettinen, Kaisa (Springer Science+Business Media, 2023)Solving multiobjective optimization problems with interactive methods enables a decision maker with domain expertise to direct the search for the most preferred trade-offs with preference information and learn about the ... -
An experimental design for comparing interactive methods based on their desirable properties
Afsar, Bekir; Silvennoinen, Johanna; Ruiz, Francisco; Ruiz, Ana B.; Misitano, Giovanni; Miettinen, Kaisa (Springer Science+Business Media, 2024)In multiobjective optimization problems, Pareto optimal solutions representing different tradeoffs cannot be ordered without incorporating preference information of a decision maker (DM). In interactive methods, the DM ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.