dc.contributor.author | Lárraga, Giomara | |
dc.contributor.author | Miettinen, Kaisa | |
dc.date.accessioned | 2023-09-12T10:19:16Z | |
dc.date.available | 2023-09-12T10:19:16Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Lárraga, G., & Miettinen, K. (2023). Component-based thinking in designing interactive multiobjective evolutionary methods. In <i>GECCO '23 Companion : Proceedings of the Companion Conference on Genetic and Evolutionary Computation</i> (pp. 1693-1702). ACM. <a href="https://doi.org/10.1145/3583133.3596307" target="_blank">https://doi.org/10.1145/3583133.3596307</a> | |
dc.identifier.other | CONVID_184210361 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/89049 | |
dc.description.abstract | Multiobjective optimization problems have multiple conflicting objective functions to be optimized simultaneously. They have many Pareto optimal solutions representing different trade-offs, and a decision-maker needs to find the most preferred one. Although most multiobjective evolutionary algorithms approximate the Pareto optimal set, their variants incorporate preference information to focus on a subset of solutions that interest the decision-maker. Interactive methods allow decision-makers to provide preference information iteratively during the solution process, enabling them to learn about available solutions and their preferences' feasibility. Nevertheless, most interactive evolutionary methods do not sufficiently support the decision-maker in finding the most preferred solution and may be cognitively too demanding.
We propose a framework for designing and implementing interactive evolutionary methods. It contains algorithmic components based on similarities in the structure of existing preference-based evolutionary algorithms and decision-makers' needs during interaction. The components can be combined in different ways to create new interactive methods or to instantiate the existing ones. We show an example of the implementation of the proposed framework composed of three elements: a graphical user interface, a database, and a set of algorithmic components. The resulting software can be utilized to develop new methods and increase their usability in real-world applications. | en |
dc.format.extent | 2469 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | ACM | |
dc.relation.ispartof | GECCO '23 Companion : Proceedings of the Companion Conference on Genetic and Evolutionary Computation | |
dc.rights | CC BY 4.0 | |
dc.title | Component-based thinking in designing interactive multiobjective evolutionary methods | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-202309125072 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Laskennallinen tiede | fi |
dc.contributor.oppiaine | Multiobjective Optimization Group | fi |
dc.contributor.oppiaine | Hyvinvoinnin tutkimuksen yhteisö | fi |
dc.contributor.oppiaine | Päätöksen teko monitavoitteisesti | fi |
dc.contributor.oppiaine | Computational Science | en |
dc.contributor.oppiaine | Multiobjective Optimization Group | en |
dc.contributor.oppiaine | School of Wellbeing | en |
dc.contributor.oppiaine | Decision analytics utilizing causal models and multiobjective optimization | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 979-8-4007-0120-7 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1693-1702 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2023 Copyright held by the owner/author(s). | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | Genetic and Evolutionary Computation Conference | |
dc.relation.grantnumber | 322221 | |
dc.subject.yso | monitavoiteoptimointi | |
dc.subject.yso | interaktiivisuus | |
dc.subject.yso | evoluutiolaskenta | |
dc.subject.yso | pareto-tehokkuus | |
dc.subject.yso | päätöksentukijärjestelmät | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p32016 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10823 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28071 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28039 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27803 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1145/3583133.3596307 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | This research was supported by the Academy of Finland (grant number 322221). The research is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization, jyu.fi/demo) of the University of Jyväskylä | |
dc.type.okm | A4 | |