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ABSTRACT

Multiobjective optimization problems have multiple conflicting ob-
jective functions to be optimized simultaneously. They have many
Pareto optimal solutions representing different trade-offs, and a
decision-maker needs to find the most preferred one. Although most
multiobjective evolutionary algorithms approximate the Pareto op-
timal set, their variants incorporate preference information to focus
on a subset of solutions that interest the decision-maker. Interactive
methods allow decision-makers to provide preference information
iteratively during the solution process, enabling them to learn about
available solutions and their preferences’ feasibility. Nevertheless,
most interactive evolutionary methods do not sufficiently support
the decision-maker in finding the most preferred solution and may
be cognitively too demanding.

We propose a framework for designing and implementing inter-
active evolutionary methods. It contains algorithmic components
based on similarities in the structure of existing preference-based
evolutionary algorithms and decision-makers’ needs during interac-
tion. The components can be combined in different ways to create
new interactive methods or to instantiate the existing ones. We
show an example of the implementation of the proposed framework
composed of three elements: a graphical user interface, a database,
and a set of algorithmic components. The resulting software can
be utilized to develop new methods and increase their usability in
real-world applications.
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1 INTRODUCTION

Multiobjective optimization problems (MOPs) involve multiple con-
flicting objective functions (or objectives, for short) that must be
optimized simultaneously. Finding a single optimal solution that
satisfies all objectives is not always possible for this type of prob-
lem. Instead, a set of solutions, forming a so-called Pareto optimal
set, represents the best trade-offs between the different objectives.
These solutions can be utilized for decision-making in various fields,
such as engineering, economics, and finance. Various approaches
have been devised for solving multiobjective optimization prob-
lems within the fields of multiple criteria decision-making (MCDM)
and evolutionary multiobjective optimization (EMO). Examples of
scalarization-based methods from MCDM can be found in [29] and
in [10, 12] for EMO methods.

Multiobjective evolutionary algorithms (MOEAs) are optimiza-
tion algorithms based on evolutionary computation, a subset of arti-
ficial intelligence inspired by the process of natural evolution. They
can be classified into dominance-, indicator- and decomposition-
based methods. They maintain a population of candidate solutions
and iteratively apply genetic operations, such as crossover and mu-
tation, to generate new solutions. The population is then evaluated
according to the multiple objectives, and the solutions are selected
based on their fitness. The process is repeated until an approxima-
tion of the Pareto optimal set is found (because of the heuristic
nature, we cannot usually guarantee actual Pareto optimality).

One should note that only some Pareto optimal solutions are help-
ful for a decision-maker (DM), a domain expert interested in finding
the most preferred solution according to their preferences. Usually,
an analyst is also involved in the solution process, supporting the
DM by performing analysis and providing recommendations.

According to the classification of multiobjective optimization
methods given, e.g., in [21, 29], MOEAs can be regarded as a pos-
teriori methods, as the preferences of the DM are considered after
the optimization process (in selecting a final solution). However, a
variety of MOEAs that incorporate the preferences of the DM have
been proposed in the literature. These preference-based MOEAs
focus on a region of the Pareto optimal set that is interesting for
the DM called a region of interest.

A priori MOEAs ask for preference information at the beginning
of the solution process. These methods are helpful when there is
some prior knowledge about the problem and what kind of solu-
tions are preferred, so the search is focused on promising regions of
the Pareto optimal set. On the other hand, interactive MOEAs allow
the DM to participate actively in the solution process by providing
preferences iteration by iteration. In each iteration, the method
shows a reduced set of solutions to the DM, who can then update
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their preferences based on the obtained knowledge. The iterative
solution process continues until the DM is satisfied with a solution.
The benefits of these methods include increased computational effi-
ciency when not all Pareto optimal solutions need to be represented
and the ability of the DM to gain insight and learn, as well as revise
preferences if needed.

A priori and interactive MOEAs are modifications of a posteriori
MOEAs. Both types of methods share a similar structure, as they in-
corporate the preference information by modifying some of the evo-
lutionary operators or adding new modules to the MOEA. However,
most of the methods in the literature do not sufficiently consider the
needs of real DMs. The main issues of the existing preference-based
MOEAs regarding their usability by real DMs are the following:
High cognitive burden: Typically, preference-based MOEAs present
many solutions to the DM to compare. The DM finds such a set diffi-
cult to digest and analyze, making it difficult to identify potentially
good solutions [1].

Unrealistic assumptions on the knowledge of the DM: Some preference-
based MOEAs ask the DM to provide technical information that is

not related to their domain expertise but to the method’s function-
ality, for example, the spread of the region of interest or parameters

associated with the evolutionary operators. In addition, some meth-
ods ask for preference information in a form difficult to understand

by the DM. Examples of these types of preference include 1) select-
ing reference vectors from a set [8, 9, 13, 42], 2) using a mathemat-
ical function to represent the preference of solutions [25, 31], 3)

assigning values to each objective function to indicate their impor-
tance [3, 17, 28], and 4) establishing a fuzzy binary relation between

objectives to reflect their preference [27, 44].

Difficult communication between the DM and the method: Most au-
thors do not utilize a graphical user interface in their implementa-
tions to facilitate retrieving preference information and presenting

the obtained solutions to DMs.

In this article, we identify multiple algorithmic components that
can be utilized to construct new interactive MOEAs and to instanti-
ate most existing ones. Then, we propose a framework for designing
and implementing new interactive methods by combining the iden-
tified components in multiple ways. On the one hand, the proposed
framework intends to increase awareness of the needs of real DMs
when developing new interactive MOEAs. On the other hand, it
enables the development of new methods conveniently. In addition,
it facilitates the implementation of new methods and their further
application. Our framework offers several key benefits:

o It enables the development of a new class of interactive
MOEAs that not only focus on the technical aspects but also
prioritize the user experience for real DMs.

It takes advantage of the modularity of the methods, enabling
the examination of novel mechanisms for incorporating pref-
erences in MOEAs.

It provides easy-to-use methods that assist DMs in finding a
solution that aligns with their preferences.

It allows for flexible implementation and is available as open-
source software.

In summary, this article proposes a new way of designing in-
teractive MOEAs that can better meet the needs of real DMs. The
proposed framework builds on the structure of state-of-the-art a
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priori and interactive MOEAs and enhances it by adding new com-
ponents that improve the communication between the DM and
the methods. In addition, we provide a guideline for implementing
a software that utilizes the proposed framework for facilitating
the development and use of new interactive MOEAs. The software
features a user-friendly interface and a database that can help to
bridge the gap between theory and practice in the design and im-
plementation of interactive MOEAs.

This article is structured as follows: Section 2 describes some
algorithmic components for representing MOEAs. In the same sec-
tion, we introduce frameworks for constructing interactive MOEAs
proposed in the literature. We identify some algorithmic compo-
nents for interactive MOEAs in Section 3 and utilize the identified
components to instantiate some of the existing interactive MOEAs.
We describe the structure of the proposed framework and exemplify
its implementation in Section 4. Finally, we conclude the article and
discuss the advantages and limitations of the proposed framework
in Section 5.

2 RELATED WORK

Several preference-based MOEAs have been proposed in the litera-
ture. As a result, multiple authors have surveyed such methods and
identified their advantages, drawbacks, and potential for improve-
ment. A common finding from such survey articles is identifying
algorithmic components common in most preference-based MOEAs.
In addition, some attempts have been made to develop frameworks
that facilitate the development of new interactive MOEAs. Although
such frameworks also identify algorithmic components, a general-
ization is still missing in the literature. Such a generalization would
be helpful to have a common guideline for allowing us to develop
new methods that can be more usable for real DMs. This section
analyzes the algorithmic components identified in both survey ar-
ticles and frameworks for interactive MOEAs. Although the main
focus of this research is to develop a framework for interactive
MOEAs, analyzing the structure of a priori methods surveyed in
the literature is highly beneficial for our purposes, as some of their
components can also be useful for interactive methods.

2.1 Components of preference-based MOEAs
identified in the literature

Coello [11] and Rachmawati et al. [32] classified preference-based
MOEAs according to the type of preferences required by the meth-
ods, and did not identify structural similarities among the methods.
Based on the authors’ knowledge, Branke [6] presented the first
survey of preference-based MOEAs, where algorithmic compo-
nents were identified. He also noted that preference-based MOEAs
are modified versions of general-purpose MOEAs. Some standard
modules of these types of methods were identified: 1) information
required from the DM, 2) modification of the MOEA, and 3) the
type of output of the method (a delimited region or a biased distri-
bution). Then, Bechikh et al. [36] and Wagner [39] utilized the same
modular structure. However, the former extended the classification
by considering various methods.

It is worth noting that although the components described in
this section are useful to characterize a priori MOEASs, they are un-
suitable for interactive ones. To adopt this structure for interactive
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MOEAs, additional components should be considered to meet the
actual needs of real DMs [1, 23, 37].

Xin et al. [40] proposed a taxonomy for interactive methods
considering both scalarization-based methods and MOEAs, which
include additional modules to the classification proposed in [6].
Such a taxonomy comprises the following components: 1) interact-
ing pattern, 2) preference information, 3) preference model, and
4) search engine. The interacting pattern considers when to ask
the DM to interact with the method, after the complete run of the
search engine (when using an MOEA, after a certain number of
generations), or during its run. The preference information is the
way in which the DM expresses their preferences. Then, the prefer-
ence model integrates the preferences of the DM into the method,
guiding it to find interesting solutions for the DM. Finally, the
search engine refers to the method that is utilized for optimization.
The interaction pattern is the only component especially aimed
at interactive methods. The rest of the components are similar to
the classification proposed in [6]. They are intended to modify the
method to direct the search toward a region of interest, so they can
also be applied to generate a priori methods.

2.2 FrameworKks for developing interactive
MOEAs

A framework is a set of rules, guidelines, or principles that serve as
a structure for achieving a particular goal or set of goals. In the case
of designing interactive MOEAs, a framework refers to a set of mod-
ules that can be incorporated into any a posteriori MOEA to convert
it into an interactive method. Analyzing some of these frameworks
helps us better understand the existing algorithmic components
identified and tested in the literature. Here we give an overview of
some frameworks proposed in the literature for developing inter-
active MOEAs. Each of them works with a different type of MOEA.
Progressively Interactive EMO using Value Functions (PI-EMO-VF) [15]:
The initial component of this framework utilizes an MOEA to ap-
proximate the Pareto optimal set. Then, a subset of solutions is
shown to the DM. The DM is asked to provide a total or partial rank-
ing according to their desirability. Such a ranking is then utilized
to construct a value function, which is incorporated into the dom-
inance principle of the MOEA. The procedure continues until the
expected progress has been achieved according to the value function
the method utilizes. This framework was tested using NSGA-II [14].
However, it can be utilized with any other dominance-based MOEA.
I-EMO-PLVF [24]: 1t is a framework for interactive decomposition-
based MOEAs consisting of three modules: 1) consultation, 2) pref-
erence elicitation, and 3) optimization. During the consultation, the
DM is asked to provide their preferences providing scalar scores for
each solution generated by the method, representing their desirabil-
ity. In the preference elicitation module, the scores are utilized to
learn a value function progressively, which models the preferences
of the DM. Then, the result of the consultation module is translated
into the form that can be used in a decomposition-based MOEA,
i.e., by redirecting the reference vectors toward a region of interest.
The optimization module can be any decomposition-based MOEA.
The authors utilized NSGA-III [13] and MOEA/D [43] during the
experimentation.
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Interactive Optimization using Preference Incorporated Space
(IOPIS) [35]: 1t is a paradigm for interactive multiobjective opti-
mization that reformulates the original problem utilizing multiple
scalarization functions to map vectors in the objective space to
a new space, called a preference incorporated space. It consists
of the following steps: 1) preference elicitation, 2) problem cre-
ation, 3) problem solution, and 4) display solutions. First, the DM is
asked to provide preference information as a reference point. Then,
the problem is reformulated as a new multiobjective optimization
problem. As objective functions, it has scalarization functions that
incorporate the reference point. Any MOEA is then applied to solve
the new problem, and the obtained solutions are filtered to show
the DM only a subset of representative solutions. The procedure
continues until the DM finds a satisfactory solution.

A general architecture for interactive decomposition-based MOEAs [23]
consists of multiple modules for generating interactive MOEAs that
accomplish the needs of real DMs (e.g., low cognitive burden and
feeling of control over the interactive solution process). The main
modules of this architecture are the following: 1) initialization, 2)
preference elicitation, 3) component adaptation, 4) optimization,
5) spread adjustment, 6) selection of solutions, and 7) iteration.
During the initialization, which information to show to the DM at
the beginning of the solution process is decided. Then, the method
asks for preference information from the DM in the preference
elicitation module. The preference information is utilized to modify
one of the components of a decomposition-based MOEA to focus
on a region of interest. Such a modified component is utilized in
a decomposition-based MOEA, which produces solutions in the
region of interest. The solutions are filtered to show only a subset
of representative solutions to the DM, who can decide to continue
with another iteration or finish the solution process. The authors
identified the potential of extending this architecture to other types
of MOEAs, as some of the components can be generalized.

3 ALGORITHMIC COMPONENTS OF
INTERACTIVE EVOLUTIONARY METHODS

As noted earlier, some work has been done to identify algorithmic
components for preference-based MOEAs. In this article, we iden-
tify standard algorithmic components to build interactive MOEAs
taking into account the ones available in the literature (see Sec-
tion 2). The algorithmic components considered aim to generalize
the existing ones and to include some additional functionalities
related to the actual needs of a DM during an interactive solution
process [1, 23, 37]. We aim to provide a guideline for designing new
interactive MOEAs that can be applied to solve real-world problems
and are easy to use by DMs. To identify the common algorithmic
components of interactive MOEAs, we need first to describe what
an interactive solution process should be like and the impact of
each stage on the DM. Then, we relate the components that have
been identified for each of the stages in the approaches described
in Section 2. Finally, we generalize such components for further
use in the framework proposed in this article.
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3.1 Interactive solution process and related
algorithmic components

In this section, we describe the general steps of an interactive solu-
tion process and the needs of a DM in each of them. We derive an
algorithmic component from each of the steps of the process. It is
worth noting that we are renaming the components in most of the
cases because of the need for unification in the terminology. For
simplicity, we assume minimization problems in what follows.
STEP 1: At the beginning of an interactive solution process, it
is crucial to give the DM information to help them define their
initial preferences and identify potential solutions. To do this, an a
posteriori MOEA is usually run for several generations. After that,
three outputs can be obtained:

(1) An approximation of an ideal point, which is found by taking
the minimum values of each objective function among the
solutions in the approximated Pareto optimal set.

(2) An approximation of a nadir point, which is found by taking
the maximum values of each objective function in the same
set.

(3) A subset of solutions, which requires a parameter specifying
the number of solutions to be shown to the DM. This selec-
tion can be made, e.g., using a clustering mechanism to find
a desired number of the most representative solutions.

This step is considered in the architecture proposed in [23]. In the
rest of this article, we refer to this component as an initializer.
STEP 2: The DM is asked to provide preference information. This
information can be expressed in various forms. Although it is de-
sirable for the DM to choose the type of preference, MOEAs are
often not flexible in this regard. Commonly used types of preference
information in the EMO literature include:

o Reference point: A vector of desired values, also known as
aspiration levels for each objective function.

Preferred and non-preferred solutions: One or more pre-
ferred or non-preferred solutions selected from a set of solu-
tions generated by the method.

Ranking solutions: A partial or complete ordering of a subset
of solutions generated by the method.

Preferred ranges: Desired upper and lower bounds for each
objective function.

Trade-offs between objectives: When a unit is gained in one
objective, how many units is it worth sacrificing in others?
Ranking objectives: Objectives are compared and ranked
using pairwise comparisons.

This step is a critical component of the solution process and is con-
sidered in all taxonomies and frameworks described in Section 2.
In the rest of the article, we refer to this as preference elicitation.
STEP 3: The preference information is modeled to be incorporated
in the optimization method. Usually, this modifies one of the evolu-
tionary operators of the MOEA. Depending on the type of MOEA,
mainly the following operators can be modified:

o Selection: the solutions that remain in the next generation
are selected based on the preference information. To this aim,
multiple variations of the dominance relation have been pro-
posed [6, 36]. In decomposition-based MOEAs, it is possible
to have a mechanism in the selection operator to update the
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reference vectors for directing the search toward the region

of interest (e.g., [18, 20]).

Quality indicator: For indicator-based MOEA:s, it is possible

to develop quality indicators that consider the preferences

of the DM to guide the algorithm, as in [37].

e Additional operator: Some approaches reformulate the prob-
lem considering the preference information before starting
the solution process [35]. In addition, multiple decomposition-
based MOEAs rearrange the reference vectors at the begin-
ning of the solution process (e.g., [18, 20]).

This component is also known as a modification [6], a preference
model [40], preference elicitation [24], and component adapta-
tion [23]. This article refers to it as a preference handler.

STEP 4: The preference handler is incorporated in the MOEA to
guide the search toward a region of interest. In the literature, this
component has been referred to as simply an MOEA [36], optimiza-
tion [23, 24], and problem solution [35]. In the rest of this article,
we call it an optimizer.

STEP 5: A subset of solutions from the region of interest generated
by the MOEA is shown to the DM. In this step, it is important to let
the DM decide the maximum number of solutions they can handle
in each iteration. Different methods can be used to choose the most
representative solutions from the region of interest depending on
the type of preference. E.g., if the DM’s preference information is a
reference point, a scalarization function can be used to pick the solu-
tions closest to it (e.g., [37]). A common approach is to use a cluster-
ing method and pick the closest solution to each cluster center. This
component can also consider reducing the spread of the region of
interest in the latter stages of the solution process. This is to help the
DM to find the most preferred solution. This component has been
referred to in the literature as display solutions [35] and selection
of solutions [23]. We name this component as filtering of solutions.
STEP 6: The DM examines the solutions presented by the method.
This could result in one of three cases: 1) the DM is satisfied with a
solution and chooses it as the final one, ending the solution process;
2) the DM wants to see more solutions in the same area of interest
and continues the solution process; or 3) the DM wants to explore
a different region of interest and updates their preferences. It is
worth noting that the stopping criterion must consider the satis-
faction of the DM with one or multiple solutions. This component
has been referred to as iteration [23]. However, most approaches
do not consider this step despite its importance. We refer to this
component as a continuation procedure.

3.2 General framework for interactive MOEAs

In this section, we describe the connections of the identified compo-
nents to establish a framework for designing interactive evolution-
ary methods. The framework’s structure is illustrated in Figure 1.
According to such a structure, designing an interactive method
involves the following steps:

(1) Determine the information shown to the DM at the begin-
ning of the solution process. This step is optional, but it is
highly desirable to show at least one of the options to the
DM (ideal point, nadir point, or a subset of solutions).
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Ideal point information (1) handler(1) Optimizer
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Subset of solutions DM O 5
ontinuation
Preference Preference procedure
information (n) handler(n)

Figure 1: Framework for designing interactive MOEAs

(2) Select one or multiple types of preference. It is mandatory
to select at least one type of preference and is desirable to
consider more than one to give more flexibility to the DM.

(3) Select a preference handler for each type of preference se-
lected in the previous step. Not all the handlers will be uti-
lized simultaneously, but the one related to the utilized pref-
erence information in each iteration would be selected.

(4) Incorporate the preference handler into the optimizer to
direct the search toward a region of interest.

(5) Utilize a filtering procedure to select a small set of represen-
tative solutions from the region of interest obtained from
the previous iteration. These solutions are shown to the DM.

(6) Establish a continuation procedure. This involves requesting
the DM to review the solutions obtained in the preceding
step and determine whether to proceed or end the process.

The framework proposed in this article shares similarities with
the architecture presented in [23], as both incorporate modules
for designing interactive MOEAs that cater to the DM’s needs.
However, their main distinction lies in the scope of their structure.
While [23] focuses on decomposition-based MOEAs, our framework
is applicable to interactive dominance-based, decomposition-based,
and indicator-based MOEAs. Additionally, the functionality of these
approaches also differs in terms of how MOEAs are employed. The
architecture of [23], proposes to transform existing a priori and a
posteriori methods into interactive versions using external modules
to handle preference information. In contrast, our proposal extracts
preference-handling mechanisms from existing preference-based
MOEAs and reutilizes them to design new interactive MOEAs.

3.3 Interactive MOEAs as instances of the
proposed framework

In this section, we show the generality of the proposed framework
by instantiating some existing interactive MOEAs from the liter-
ature. It is worth noting that not all interactive methods consider
all the components identified in this article. As shown in [1], it is
common that some interactive MOEAs do not consider the actual
needs of real DMs. Because of this, components such as the initial-
izer and filtering solutions are not present in the structure of some
of the methods. Table 1 shows some relevant interactive MOEAs as
instances of the proposed framework.
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4 A SOFTWARE FOR DESIGNING
INTERACTIVE METHODS

In this section, we present a design proposal for a software intended
to facilitate the implementation of interactive MOEAs. The soft-
ware aims to simplify the development and use of new interactive
MOEASs by promoting good design practices learned from, e.g., the
MCDM field. With an increasing interest in interactive MOEAs, it is
crucial to consider the needs of real DMs, not just technical details.
Otherwise, the methods will not be applicable to real problems by
real DMs. The envisioned software is expected to drive a new era
of interactive MOEAs that cater to the needs of DMs. The proposed
software is composed of three components:
(1) A framework for designing interactive methods.
(2) A database for storing the metadata of the methods and the
solutions generated by the solution process.
(3) A graphical user interface for easy communication between
the DM and the methods.

The rest of this section will illustrate the software’s implementation,
highlighting each component.

4.1 Framework for the modular design of
interactive MOEAs

Several open-source software frameworks are available for solv-
ing multiobjective optimization problems using evolutionary al-
gorithms. The Platypus software, written in Python, provides sev-
eral MOEAs and a performance evaluation tool. MOEA [19] is a
Java-based framework that offers automatic process distribution
across multiple cores and state-of-the-art MOEAs. The C++-based
PaGMO [4] software provides both single and multiobjective op-
timization methods with parallelization capabilities, and there is
a Python version of the software named PyGMO [22]. jMetal [16]
is a Java-based, object-oriented framework with metaheuristics
available in multiple languages, including C++ [26] and Python [2].
Pymoo [5] is a Python-based framework that includes visualization
techniques. PlatEMO [38] is a MATLAB-based open-source soft-
ware that provides multiple MOEAs, performance indicators, and a
graphical user interface but requires a MATLAB license.

The Python-based open-source framework DESDEO [30] is the
only framework that includes interactive methods, both scalari-
zation-based methods and MOEAs. Because of our interest in inter-
active methods, we use DESDEO to demonstrate the implementa-
tion of the proposed framework, but it can also be implemented in
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Table 1: Instantiation of state-of-the-art interactive MOEAs using the proposed framework.

e 1 Preference Preference .. Filtering Continuation
Method Initializer . . Optimizer .
incorporation handler solutions procedure
Interactive Show a subset . 1 Achievement s . .
PBEA [37] of solutions Reference point Quality indicator PBEA [37] function DM'’s satisfaction
. Modified selection
Show a pair o . . . .
NEMO (7] B Pairwise comparisons  (ranking and crowding NSGA-II [14] Random Not specified
of solutions .
distance)
iMOEA/D [18] Show a'subset Preferred solution Rearrangement of MOEA/D [43] Random leed'number of
of solutions reference vectors iterations
Interactive WASF-GA [33] Show 1d-eal . Reference point Rearrangement of WASF-GA [34] Clustering DM’s satisfaction
and nadir points reference vectors
1) Reference points .
. Different types
Interactive Show a subset 2) (Non)preferred : . s . .
RVEA [20] of solutions solutions of adaptation of RVEA [8] Clustering DM’s satisfaction

3) Preferred ranges

reference vectors

ICB-MOEA/D [41]

Show a subset
of solutions

Preferred solution

Problem reformulation

MOEA/D [43]

Show entire
population

DM’s satisfaction

1) -MOEA/D-PLVF and
2) -NSGA-III-PLVF [24]

Show a subset
of solutions

Scores

Learn value function to
adapt reference vectors

1)MOEA/D [43]
2)NSGA-III [13]

Solutions with
best value function

Fixed number of
iterations

1) IOPIS-RVEA
2) IOPIS-NSGA-III [35]

Show ideal
and nadir points

Reference point

Problem reformulation

1) RVEA [8]
2) NSGA-II [13]

Clustering

DM’s satisfaction

any other framework with a modular structure for MOEAs. For the
implementation of the framework, we are interested in the DES-
DEO package named desdeo-emo. This package allows a modular
implementation of MOEAs by considering the following modules:
population, recombination, selection, EAs, surrogatemodelling, and
utilities. More details on each module can be found in [30]. Taking
advantage of the modularity of desdeo-emo, we can incorporate the
algorithmic components described in Section 3. Figure 2 illustrates
how to combine desdeo-emo with the algorithmic components
identified in this research. The yellow boxes represent the main
modules of desdeo-emo, and the blue boxes are the algorithmic
components identified in this article that need to be incorporated in
desdeo-emo. The implementation decisions are justified as follows:

The EA module in desdeo-emo integrates the interaction be-
tween the MOEA and the DM. This module can connect compo-
nents such as the initializer, preference information types, solution
filtering, and continuation procedure.

The initializer requires parameters that determine the type of
information to present to the DM at the beginning of the solution
process. To implement this, the EA module already includes a pre-
iteration function that can be utilized to perform certain functions
before each iteration. In this case, the first iteration needs to be iden-
tified within the pre-iteration function to ensure that the desired
functionality only occurs at the beginning of the solution process.

The EA module contains the function allowable_interaction_types
to specify the preference types considered by each MOEA. However,
the validation and request of preferences take place in the desdeo-
tools package. Therefore, incorporating new types of preference
would require modifying the Interaction module on desdeo-tools.

The preference handlers can be managed in the manage_preferences
function of the EA module. However, it requires coding multiple
preference handlers (selection operators, recombination procedures,
or other utilities as reference vector adaptation) and implementing
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a mechanism to select which one(s) to utilize with the optimizer.
This is the biggest challenge in the implementation, as it involves
restructuring some parts of the EA module. In addition, a decision
tree can be helpful for the manage_preferences function to only
allow preference handlers that can be utilized with the type of
preferences and the optimizer selected.

The modular structure of desdeo-emo addresses the functional-
ity of the optimizer component. However, the module is currently
mainly oriented to decomposition-based and indicator-based ap-
proaches. To make the framework more general, it is important to
implement more types of MOEAs, e.g., MOEAs based on dominance.

The post-iteration function of the EA module can be useful to in-
corporate the functionality of the filtering solutions component. To
this aim, it is important to implement multiple filtering procedures
and make connections with the type of preferences with which
they can be utilized.

Finally, the continuation procedure is also considered in the EA
module. However, such functionality must be improved to consider
the three possible cases for this component: 1) end the solution
process, 2) continue using the same preference information, or 3)
explore a new region of interest. When the DM is interested in
continuing the solution process using the same preferences, it is
possible to reduce the spread of the region of interest to ease the
selection of the most preferred solution of the DM.

It is worth noting that this is just an example of implementing the
proposed framework to create a software for designing and utilizing
interactive MOEAs. The specifics of the implementation, such as
modifications to the desdeo-emo modules to integrate the new
functionalities, may vary based on any issues encountered during
implementation or to improve its performance. Furthermore, other
frameworks for MOEAs (e.g., pymoo or jMetal) could be utilized to
achieve the same implementation.
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Figure 2: Integration of the proposed framework with desdeo-emo

utilities

4.2 Structure of the database

A database is needed in the proposed software for multiple purposes.
Its main aim is storing the parameters needed to construct a method
in the framework. In addition, a database can benefit DMs, as they
can store potentially good solutions for each solution process. In
the following, we briefly discuss the components of the suggested
database. It is composed of reference tables and base tables.

Reference tables are used in database design to maintain consis-
tency in the data and to reduce data redundancy. They typically
contain a list of items along with their attributes or features. In the
database model utilized for our software, we consider the following
reference tables:

o PreferenceTypes: This table lists the possible types of prefer-
ences considered in the software. The attributes of this table
include a name and a description.

PreferenceHandlers: A list of preference handlers is included
in this table. Their attributes include a name, the type of evo-
lutionary operator, the type of MOEA in which it can be used,
and the type of preference information accepted as input.
Optimizer: It includes a list of MOEAs available in the soft-
ware. As attributes, this table stores the name of the MOEA

and its type (decomposition-based, indicator-based, or dominance-

based).

Problem: A list of MOPs is described in this table, indicat-
ing the number of variables, objectives, and the presence of
constraints, among other attributes.

Base tables are the primary tables in a relational database that
store data. They contain columns and rows and are used to store
data. These tables are a key component of a relational database
and play a critical role in supporting data storage, retrieval, and
management. Such tables can contain primary keys and foreign
keys. A primary key is a unique identifier for each record in a table.
It is used to identify a specific record in the table and to enforce data
integrity. Each table in a relational database should have a primary
key, and the values in the primary key column should be unique for
each record. On the other hand, a foreign key is a column or set of
columns in one table that refers to the primary key of another table.
A foreign key is used to establish a relationship between two tables
and to enforce referential integrity, which ensures that the data in
one table is consistent with the data in another table. The tables and
attributes considered in the proposed database are the following:

e User: it includes a list of usernames and the type of user
(analyst or DM). More attributes can be added to this table if
additional user information is needed (email, password, etc.).
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e Method: this table includes the parameters to construct an
interactive method using the proposed framework. It con-
tains an attribute for specifying the method’s name and two
foreign keys: user_id (the id of the user that created the
method) and optimizer_id (the MOEA utilized in the inter-
active method). Additional parameters can also be included
in this table, such as the parameters of the evolutionary
operators.

Initializer: the configuration of the initializer for each method
is included in a record on this table. It has a foreign key
(method_id) to be connected with the Method table.

o AllowedPreferences: this table records the types of prefer-
ences applicable for each method. It is connected to the
Method, PreferenceTypes, and PreferenceHandler by foreign
keys. Each method can be assigned to multiple types of pref-
erences. And for each one, a preference handler is needed.
SolutionProcess: this table represents an interactive solution
process involving attributes such as user_id, method_id, and
problem_id, which are also foreign keys.

o ArchivedSolutions: the solutions stored by the DM during
a solution process are stored in this table. It is connected to
the SolutionProcess table with a foreign key.

Filtering: this table specifies the parameters for the filtering
procedure utilized by each method. It is connected to the
Method table with a foreign key.

Continuation: it records the parameters of the continuation
procedure of each method. It is connected to the Method
table with a foreign key.

4.3

A graphical user interface (GUI) is a type of user interface that
allows users to interact with electronic devices, such as comput-
ers, using visual elements such as windows, icons, and buttons.
The goal of a GUI is to make the user experience more intuitive
and user-friendly, allowing users to interact with a device using a
familiar graphical interface rather than typing commands into a
command line interface.

In a decision-making context, a GUI can provide a visual repre-
sentation of information and allows DMs and analysts to interact
with the data more intuitively and in a user-friendly manner. A GUI
can help users make informed decisions by:

Graphical user interface

e Presenting information in a clear and organized manner: A
GUI can present information in a way that is easy to un-
derstand and visually appealing. It can display data using
graphs, charts, tables, and other visual elements that make
it easier to analyze and compare the information.
Enhancing collaboration: A GUI can provide a platform for
collaboration between multiple users. For example, an an-
alyst can design an interactive method with the proposed
software, implement a problem, and involve a DM to solve it.
Then, the analyst can access the solutions found by the DM
or get feedback about the method. Also, the DM can explore
the solutions stored during the solution process.

Improving accessibility: A GUI can make it easier for users
to access information and make decisions, even if they are
not technically savvy. With its visual elements and intuitive
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Figure 3: Sketch of the interface for solving a MOP

interface, a GUI can reduce the need for training and support,
making it accessible to a wider range of users.

The proposed software is designed with multiple windows for
each of its functionalities, catering to two types of users: analysts
and DMs. Analysts can create new methods using an interactive
GUI, with all parameters saved in the database. They can also view
and use all previously created methods. In addition, they can assist
DMs in choosing an appropriate method to solve optimization prob-
lems. DMs can then use the recommended method, store their pre-
ferred solutions, and choose their preferred visualization options.

The GUI for generating new methods involves multiple steps re-
lated to the algorithmic components of the framework. For this rea-
son, it is difficult to illustrate this part of the GUI in the present arti-
cle. However, we illustrate the interface to help the DM solve a prob-
lem. A sketch of the interface’s structure is illustrated in Figure 3.

This interface is divided into three main sections:

(1) Preference information bar: the DM can provide their pref-
erences in the vertical bar on the left of the window. If the
method can handle multiple types of preferences, they can
be selected by clicking the arrow at the top of the bar. It is
worth noting that the form for retrieving the preferences
differs depending on the utilized type. The text boxes in the
preference information bar of Figure 3 are examples of the
type of controls that can be utilized to retrieve information.

(2) Visualizations section: there is a box at the top right of the

window that aims to display the obtained solutions utilizing

a visualization. By clicking the arrow on the box’s title, the

DM can select the type of visualization to utilize (e.g., parallel

coordinate plot, petal diagram, etc.).

Solution table: there is a table on the bottom right of the win-

dow to show the solutions generated by the method at each

iteration. In addition, this table can also be utilized to display

the solutions stored during the solution process. The DM

can decide whether one wants to view objective or decision

variable values.

G

~

5 CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

In this article, we identified algorithmic components to design new
interactive MOEAs. Such components were identified from the
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existing surveys and frameworks from the literature, but also con-
sidering the needs of DMs during an interactive solution process.
The methods designed with the proposed framework aim to be user-
friendly and reduce DMs’ cognitive burden. This is accomplished by
providing informative guidance at the start of the solution process
and granting DMs the flexibility to select the type of preference
information and the number of solutions to be shown in each it-
eration. With this framework, we want to increase awareness of
the needs of real DMs during an interactive solution process. It is
the first step in developing a new generation of interactive MOEAs
that are not only good in terms of performance but also improve
their usability in real-world applications.

We also proposed a way to implement the proposed framework
to create a software that analysts and DMs can use. The main func-
tionalities of this software are to allow the analysts to create new
interactive MOEAs intuitively and to have the possibility of utiliz-
ing them with a GUL For DMs, the proposed software can enhance
the communication between them and the methods, providing an
easy way of expressing their preferences and visualizing the ob-
tained solutions. The main research directions derived from this
research are the following:

Generalization for multiple types of interaction: Not all the
existing interactive MOEAs can be instantiated utilizing the iden-
tified components. As it has been identified in the literature [40],
there are multiple types of interaction: during the run of the MOEA
and after running the MOEA for a certain number of generations.
The current stage of the proposed framework only considers the
interaction after running an MOEA for a given number of genera-
tions. Such generations are usually provided by the analyst together
with the technical parameters of the method. However, extending
our framework to generalize more interactive MOEAs is currently
a research subject.

Identifying preference handlers: There exist multiple ways of
handling different types of preference information. Identifying pref-
erence handlers requires an extensive literature review regarding a
priori and interactive MOEAs.

Usability tests: Designing a GUI that is easy to use for a wide
variety of users is not an easy task. The implementation of the
GUI is in an early stage, where the involvement of experts on
multiobjective optimization and decision-making is crucial. After
prototyping a functional GUI that meets the requirements of a
decision-making system, it is important to perform usability tests
to prove that the GUI is accessible and user-friendly and helps guide
the DM through the solution process.

Combination of multiple components: The framework’s modu-
larity allows us to generate new methods by combining the com-
ponents in different ways. An interesting research direction is the
creation and comparison of multiple interactive MOEAs utilizing
the proposed framework to identify the advantages and drawbacks
of each approach.
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