Näytä suppeat kuvailutiedot

dc.contributor.authorKivioja, Ville
dc.contributor.authorLe Donne, Enrico
dc.contributor.authorNicolussi Golo, Sebastiano
dc.date.accessioned2023-02-14T08:24:31Z
dc.date.available2023-02-14T08:24:31Z
dc.date.issued2022
dc.identifier.citationKivioja, V., Le Donne, E., & Nicolussi Golo, S. (2022). Metric equivalences of Heintze groups and applications to classifications in low dimension. <i>Illinois Journal of Mathematics</i>, <i>66</i>(1), 91-121. <a href="https://doi.org/10.1215/00192082-9702295" target="_blank">https://doi.org/10.1215/00192082-9702295</a>
dc.identifier.otherCONVID_104170431
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85451
dc.description.abstractWe approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between Heintze groups. Then we will see how these results together with the existing tools related to isometries can be applied to groups of dimension 4 and 5 in particular. Thus, we take steps toward determining all the equivalence classes of groups up to isometry and quasi-isometry. We completely solve the classification up to isometry for simply connected solvable groups in dimension 4 and for the subclass of groups of polynomial growth in dimension 5.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherDuke University Press
dc.relation.ispartofseriesIllinois Journal of Mathematics
dc.rightsIn Copyright
dc.titleMetric equivalences of Heintze groups and applications to classifications in low dimension
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202302141739
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange91-121
dc.relation.issn0019-2082
dc.relation.numberinseries1
dc.relation.volume66
dc.type.versionacceptedVersion
dc.rights.copyright© 2021 by the University of Illinois at Urbana–Champaign
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber328846
dc.relation.grantnumber288501
dc.relation.grantnumber322898
dc.relation.grantnumber713998
dc.relation.grantnumber713998
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG
dc.subject.ysometriset avaruudet
dc.subject.ysoryhmäteoria
dc.subject.ysodifferentiaaligeometria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27753
jyx.subject.urihttp://www.yso.fi/onto/yso/p12497
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1215/00192082-9702295
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramERC Starting Granten
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramERC Starting Grantfi
jyx.fundinginformationV. K. and E. L. D. were partially supported by the European Research Council (ERC Starting Grant 713998, GeoMeG “Geometry of Metric Groups”). E. L. D. and S. N. G. were partially supported by the Academy of Finland (Grant 288501, “Geometry of Sub-Riemannian Groups,” and Grant 322898, “Sub-Riemannian Geometry via Metric-Geometry and Lie-Group Theory”). S. N. G. has been supported by the Academy of Finland (Grant 314172, “Quantitative Rectifiability in Euclidean and Non-Euclidean Spaces,” and Grant 328846, “Singular Integrals, Harmonic Functions, and Boundary Regularity in Heisenberg Groups”). V. K. was also supported by the Emil Aaltonen Foundation.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright