On one-dimensionality of metric measure spaces
Schultz, T. (2021). On one-dimensionality of metric measure spaces. Proceedings of the American Mathematical Society, 149(1), 383-396. https://doi.org/10.1090/proc/15162
Julkaistu sarjassa
Proceedings of the American Mathematical SocietyTekijät
Päivämäärä
2021Tekijänoikeudet
© 2020 American Mathematical Society
In this paper, we prove that a metric measure space which has at least one open set isometric to an interval, and for which the (possibly non-unique) optimal transport map exists from any absolutely continuous measure to an arbitrary measure, is a one-dimensional manifold (possibly with boundary). As an immediate corollary we obtain that if a metric measure space is a very strict CD(K, N) -space or an essentially non-branching MCP(K, N)-space with some open set isometric to an interval, then it is a one-dimensional manifold. We also obtain the same conclusion for a metric measure space which has a point in which the Gromov-Hausdorff tangent is unique and isometric to the real line, and for which the optimal transport maps not only exist but are unique. Again, we obtain an analogous corollary in the setting of essentially non-branching MCP(K, N)-spaces
Julkaisija
American Mathematical Society (AMS)ISSN Hae Julkaisufoorumista
0002-9939Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/47292076
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The author acknowledges the support by the Academy of Finland, project #314789Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Existence of optimal transport maps in very strict CD(K,∞) -spaces
Schultz, Timo (Springer Berlin Heidelberg, 2018)We introduce a more restrictive version of the strict CD(K,∞) -condition, the so-called very strict CD(K,∞) -condition, and show the existence of optimal maps in very strict CD(K,∞) -spaces despite the possible ... -
Indecomposable sets of finite perimeter in doubling metric measure spaces
Bonicatto, Paolo; Pasqualetto, Enrico; Rajala, Tapio (Springer, 2020)We study a measure-theoretic notion of connectedness for sets of finite perimeter in the setting of doubling metric measure spaces supporting a weak (1,1)-Poincaré inequality. The two main results we obtain are a decomposition ... -
Quasispheres and metric doubling measures
Lohvansuu, Atte; Rajala, Kai; Rasimus, Martti (American Mathematical Society, 2018)Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere X is a quasisphere if and only if X is linearly locally connected and carries a weak metric doubling measure, ... -
On a class of singular measures satisfying a strong annular decay condition
Arroyo, Ángel; Llorente, José G. (American Mathematical Society, 2019)A metric measure space (X, d, t) is said to satisfy the strong annular decay condition if there is a constant C > 0 such that for each x E X and all 0 < r < R. If do., is the distance induced by the co -norm in RN, we ... -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.