Metric equivalences of Heintze groups and applications to classifications in low dimension
Kivioja, V., Le Donne, E., & Nicolussi Golo, S. (2022). Metric equivalences of Heintze groups and applications to classifications in low dimension. Illinois Journal of Mathematics, 66(1), 91-121. https://doi.org/10.1215/00192082-9702295
Julkaistu sarjassa
Illinois Journal of MathematicsPäivämäärä
2022Tekijänoikeudet
© 2021 by the University of Illinois at Urbana–Champaign
We approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between Heintze groups. Then we will see how these results together with the existing tools related to isometries can be applied to groups of dimension 4 and 5 in particular. Thus, we take steps toward determining all the equivalence classes of groups up to isometry and quasi-isometry. We completely solve the classification up to isometry for simply connected solvable groups in dimension 4 and for the subclass of groups of polynomial growth in dimension 5.
Julkaisija
Duke University PressISSN Hae Julkaisufoorumista
0019-2082Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/104170431
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen Akatemia; Euroopan komissioRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SA; Akatemiatutkija, SA; Akatemiahanke, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
V. K. and E. L. D. were partially supported by the European Research Council (ERC Starting Grant 713998, GeoMeG “Geometry of Metric Groups”). E. L. D. and S. N. G. were partially supported by the Academy of Finland (Grant 288501, “Geometry of Sub-Riemannian Groups,” and Grant 322898, “Sub-Riemannian Geometry via Metric-Geometry and Lie-Group Theory”). S. N. G. has been supported by the Academy of Finland (Grant 314172, “Quantitative Rectifiability in Euclidean and Non-Euclidean Spaces,” and Grant 328846, “Singular Integrals, Harmonic Functions, and Boundary Regularity in Heisenberg Groups”). V. K. was also supported by the Emil Aaltonen Foundation. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups
Fässler, Katrin; Le Donne, Enrico (Springer, 2021)This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give ... -
Nilpotent Groups and Bi-Lipschitz Embeddings Into L1
Eriksson-Bique, Sylvester; Gartland, Chris; Le Donne, Enrico; Naples, Lisa; Nicolussi Golo, Sebastiano (Oxford University Press (OUP), 2023)We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an L1 space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into L1 is ... -
On one-dimensionality of metric measure spaces
Schultz, Timo (American Mathematical Society (AMS), 2021)In this paper, we prove that a metric measure space which has at least one open set isometric to an interval, and for which the (possibly non-unique) optimal transport map exists from any absolutely continuous measure to ... -
Existence of optimal transport maps in very strict CD(K,∞) -spaces
Schultz, Timo (Springer Berlin Heidelberg, 2018)We introduce a more restrictive version of the strict CD(K,∞) -condition, the so-called very strict CD(K,∞) -condition, and show the existence of optimal maps in very strict CD(K,∞) -spaces despite the possible ... -
Singular quasisymmetric mappings in dimensions two and greater
Romney, Matthew (Academic Press, 2019)For all n ≥2, we construct a metric space (X, d)and a quasisymmetric mapping f:[0, 1]n→X with the property that f−1 is not absolutely continuous with respect to the Hausdorff n-measure on X. That is, there exists a Borel ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.