Show simple item record

dc.contributor.authorLiu, Jiayin
dc.date.accessioned2023-02-02T05:51:45Z
dc.date.available2023-02-02T05:51:45Z
dc.date.issued2022
dc.identifier.citationLiu, J. (2022). On the dimension of Kakeya sets in the first Heisenberg group. <i>Proceedings of the American Mathematical Society</i>, <i>150</i>(8), 3445-3455. <a href="https://doi.org/10.1090/proc/15914" target="_blank">https://doi.org/10.1090/proc/15914</a>
dc.identifier.otherCONVID_150914954
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85280
dc.description.abstractWe define Kakeya sets in the Heisenberg group and show that the Heisenberg Hausdorff dimension of Kakeya sets in the first Heisenberg group is at least 3. This lower bound is sharp since, under our definition, the {xoy}-plane is a Kakeya set with Heisenberg Hausdorff dimension 3.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.ispartofseriesProceedings of the American Mathematical Society
dc.rightsIn Copyright
dc.titleOn the dimension of Kakeya sets in the first Heisenberg group
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202302021563
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3445-3455
dc.relation.issn0002-9939
dc.relation.numberinseries8
dc.relation.volume150
dc.type.versionacceptedVersion
dc.rights.copyright© 2022 American Mathematical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysofraktaalit
dc.subject.ysomittateoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6341
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1090/proc/15914
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright